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Abstract

Machine learning applications can benefit greatly from vast amounts of data,

provided that reliable labels are available. Mobilizing crowds to annotate the

unlabeled data is a common solution. Although the labels provided by the

crowd are subjective and noisy, the wisdom of crowds can be captured by a

variety of techniques. Finding the mean or the median of a sample’s annota-

tions are widely used approaches for finding the consensus label of that sample.

Improving consensus extraction from noisy labels is a very popular topic, the

main focus being binary label data. In this paper, we focus on crowd consensus

estimation of continuous labels, which is also adaptable to ordinal or binary

labels. Our approach is designed to work on situations where there is no gold

standard; it is only dependent on the annotations and not on the feature vec-

tors of the instances, and does not require a training phase. For achieving a

better consensus, we investigate different annotator behaviors and incorporate

them into four novel Bayesian models. Moreover, we introduce a new metric to

examine annotator quality, which can be used for finding good annotators to en-

hance consensus quality and reduce crowd labeling costs. The results show that

the proposed models outperform the commonly used methods. With the use of

our annotator scoring mechanism, we are able to sustain consensus quality with

much fewer annotations.
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1. Introduction

In 1906, statistician Francis Galton observed a contest held in a fair; on

estimating the weight of a slaughtered and dressed ox. He calculated that the

median guess of 787 people was 1207 pounds which is within 0.8% of the true

weight of 1198 pounds [1]. This experiment broke new ground in cognitive5

science; establishing the notion that opinions of a crowd on a particular subject

can be represented by a probability distribution. This is what we today call the

wisdom of crowds. A crowd can be any group of people, such as the students of

a school, or even the general public. In daily life, when we lack knowledge about

a certain concept we inquire those around us to obtain a general idea. A similar10

approach can also be adapted to scientific research where it is not feasible or

possible to observe the phenomenon directly.

Employing the power of a crowd for a task is called crowdsourcing. Many

applications in crowdsourcing exist such as fundraising, asking for people to

vote their appreciation of movies and books, or dividing up and parallelizing15

complex tasks to be completed. The microwork concept deals with breaking

up very large problem that may or may not be solved by computers. Amazon

Mechanical Turk [2] and Crowdflower [3] are examples of microwork platforms

where people submit lots of small tasks to be completed by other people all

around the world, for a fee.20

Ground truth labeling is often considered to be a menial task and consumes

the valuable time of researchers acquiring datasets. For labeling tasks that do

not require expert opinion, many research centers and universities prefer paying

a group of people from the general population for ground truth annotation.

Assume that we have N samples and R annotators where each annotator25

annotates a randomized subset of N samples and every sample is annotated

by a group of annotators. This is a common case for crowdsourced annotation
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tasks. The aim of our work is to obtain consensus labels for each sample using

these annotations.

In this paper, we focus on modeling annotator behavior and incorporating30

it in four new Bayesian models that we propose for the crowd labeling prob-

lem. The models we propose are designed particularly for continuous or ordinal

scores, but could be applied to categorical scores as well. Our method is specif-

ically designed for problems where there is no gold standard and we do not

include a training step in our approach. We also provide a new annotator scor-35

ing mechanism, which may be used to weed out low quality annotators and

reduce crowd labeling costs.

We start by addressing related work in the literature in Section 1.1 and em-

phasizing our contributions in Section 1.2. We investigate annotator behaviors

by explaining various annotator types in Section 2. Then, we present the pro-40

posed Bayesian models in Section 3, which are used for simultaneously modeling

the behaviors of annotators and finding consensus for each sample. Section 4

describes the measure we propose for scoring the competence of annotators.

Since crowdsourced labeling is an expensive process, choosing good annotators

is crucial for reducing the costs. That makes annotator competence scoring an45

important aspect of our work. In Section 5, we present the results of our ex-

periments for evaluating our models. The experiments are performed on two

crowdsourced datasets, with and without ground truth information. Finally, we

conclude the work in Section 6, with possible future directions.

1.1. Related work50

An annotation task completed by crowdsourcing contains vast information

along with many interesting challenges. Annotators come from different back-

grounds, their experiences vary, and they provide opinions over a large scale.

An in-depth survey by Frenay et al. [4] focuses on defining label noise and its

sources, and introduces a taxonomy on the types of label noise. Potential draw-55

backs and related solutions are discussed, including algorithms which are label

noise-tolerant, label noise cleansing, and label noise-robust. Srivastava et al.
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investigate the problem of subjective video annotation and majority opinion is

shown to be the most objective annotation for a video [5]. Carpenter[6] utilizes

multilevel Bayesian approaches on binary data annotations, and introduce priors60

on sensitivity and specificity of annotators. Singular opinions of the annotators

are unreliable, but the consensus of the crowd provides a strong insight. Find-

ing a reasonable consensus among the annotators is very important, especially

in cases where the ground truth (or gold standard) does not exist. Raykar et

al. estimate the gold standard and measure the competence of the annotators65

iteratively in a probabilistic approach [7]. Their results are challenged by Ro-

drigues et al. in a supervised multiclass classification problem with a simpler

probabilistic model [8]. Ground truth estimation is done by annotator model-

ing by using the annotators’ self-reported confidences in [9]. Human personality

trait evaluation is also a problem where no quantifiable ground truth exists.70

Trait annotations collected by crowdsourcing are used in [10] for personality

trait classification.

The problem of annotator reliability is a very popular subject and tackled

in [11] by using Gaussian mixture models. Liu et al. approach this problem by

using belief propagation and mean field methods [12]. Statistical methods are75

used for estimating annotator reliability and behavior [13], as well as includ-

ing annotator parameters such as bias, expertise, and competence [14]. Both

approaches group annotator behaviors into different ‘schools of thought’. Decid-

ing on annotator reliability is also accomplished by measuring annotator quality.

Wu et al. propose a probabilistic model of active learning with multiple noisy80

oracles together with the oracles’ labeling quality [15]. Dutta et al. also deal

with annotator quality in a crowdsourcing case study where the multiple anno-

tators provide high level categories for newspaper articles [16]. Donmez et al.

introduce a new algorithm based on Interval Estimation for estimating the ac-

curacy of multiple noisy annotators and select the best ones for active learning85

[17].

Annotators’ varying expertise both among themselves and over different

parts of the data are also factors affecting their reliability. Zhang et al. in-
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vestigate annotator expertise with a combination of ML and MAP estimation

[18]. An online learning algorithm weeding out unreliable annotators and asking90

for labels from reliable annotators for instances which have been poorly labeled

has been introduced in [19]. Varying annotator expertise problems are also han-

dled in [20] and [21] with ground truth estimation, using MAP estimation and

EM approach. Whitehill et al. also study annotator expertise, taking noisy and

adversarial annotators into account [22].95

Detecting spammers/abusers, and biased annotators is also useful for elim-

inating and/or modifying specific annotations. Spectral decomposition tech-

niques are used for moderating abusive content in [23]. Raykar et al. propose

an empirical Bayesian algorithm for iteratively eliminating spammers and esti-

mating consensus labels from good annotators [24]. Wauthier et al. present a100

new Bayesian model for reducing annotator bias to combine the data collection,

data curation and active learning [25].

1.2. Novelty and contributions

A straightforward solution for the continuous annotation case might be tak-

ing the mean or median of annotations for each sample. For the binary case,105

majority voting is the first solution that comes to mind. However, a few prob-

lems arise with these approaches, such as:

• Annotator errors and outliers have a high impact on the consensus,

• Valuable information on annotator behavior and expertise is disregarded.

Investigating the behaviors of annotators and modeling their aspects would110

prove useful for utilizing valuable information.

The methods in the literature that we mentioned are mostly designed for

binary labeled input [6, 7, 8, 14, 18, 21, 24, 26]. However, in many annotation

problems, researchers request continuous or ordinal annotations and map the

annotations to binary labels. An example of this is the heart wall segment level115

ratings where trained cardiologists are asked to rate the samples in the interval

1-5, but the input annotations are binarized as normal (1) and abnormal (2-5)
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[21, 26]. Unfortunately, this binarization process results in the loss of valuable

information.

Another approach is to use ordinal annotations, as if they were categories,120

as input to the categorical models [27, 28]. Although it is possible to employ

these types of models for ordinal labels, the categorical approach falls short

of preserving the ordinal and proportional relations. For continuous or ordi-

nal annotations, it is better to employ models that make use of ordinal and

proportional information.125

Numerous methods also make use of features extracted from data [7, 18, 29].

In the case where feature extraction is not possible or feasible, methods such as

ours can be used. Moreover, the success of data dependent methods relies heav-

ily on the quality of extracted features. In addition, model performance across

different types of problems requiring different types of features is unpredictable.130

There are only a handful of works focused on ordinal or continuous anno-

tations. Raykar et al.[7] combined sample classification with label consensus

estimation. In addition, they also propose a simple data-independent model

for continuous labels. Lakshminarayanan and Teh [30] focus on ordinal labels.

They incorporate task difficulty to the discretization of continuous latent vari-135

ables in their model. These works are pioneering elements in the continuous

crowd labeling problems. However, to the best of our knowledge, our work

is the first attempt to investigate the effect of diverse annotator behaviors on

consensus estimation and annotator scoring mechanism for continuous crowd

labeling problems.140

The contributions of this study can be summarized as follows:

• We propose four new Bayesian models that model annotator behaviors for

continuous or ordinal annotations to estimate the consensus scores. The

proposed methods do not require any training step and are particularly

designed for problems where there is no ground truth available. As a145

result, they are suitable to the problems where the ground truth is not

available by construct, i.e. subjective annotations of human behavior. We
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believe that this is the first work that incorporates numerous annotator

behaviors in consensus estimation for continuous crowd labeling problems.

• We show that the consensus scores estimated by the proposed models can150

be converted to categorical scores using simple techniques such as thresh-

olding. As an example, we use the binary output case and used thresh-

olding for the binarization of continuous consensus values (i.e. model

output). The experiments that we perform shows that the binarized con-

sensus scores produced by the proposed models has higher accuracy in155

comparison to the state of the art techniques that are specifically designed

for binary scores.

• We provide a new annotator scoring mechanism, which assigns a score

to each annotator, representing the annotation quality of that annotator.

This score can be used to select high quality annotators for a given task160

to decrease annotation cost and time. We show that the proposed anno-

tator score successfully selects good annotators, and the consensus scores

estimated using selected annotators has lower error.

• We compare the models with state-of-the art methods in the literature

and report the results of our experiments on two datasets:165

– We introduce a new crowdsourced annotation dataset based on the

FGNet Aging Database [31]. Although a training set with ground

truth labels is not required for our methods, the existence of ground

truth labels in FGNet enables us to validate our results. Obtaining

reasonable consensus scores with crowd labeling tasks is especially170

important in problems where the ground truth does not exist (i.e.

unquantifiable or subjective).

– Our second dataset contains subjective annotations of personality im-

pressions. Due to their highly subjective character, a ground truth

for personality impressions does not exist. We produce consensus175

labels using our models for the personality impressions annotations
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presented in [32]. The analysis of the annotator models on the person-

ality impressions data, where there is no ground truth, is performed

through the performance of the regression and classification models

for predicting the personality traits trained using different consensus180

scores estimated by different models.

2. Annotator behaviors

Different annotator behaviors have been observed in crowdsourced tasks and

discussed in several papers on analyzing crowdsourcing systems and on anno-

tator modeling. The reasons behind these different annotator behaviors are185

various. While some of these behaviors are due to the level of expertise of the

annotators, some may occur due to low-attention/low-concentration on the task,

and some behaviors are observed due to the bad intent of the annotators. For

example there are spammers [24], dishonest annotators [33] or annotators who

try to game the system [34] by providing unrelated or nonsense answers. In190

[24], the annotators’ behaviors such as biased or malicious annotators are also

discussed.

We wish to understand the behavior and expertise of annotators for reaching

a common annotation (consensus) for each sample. Some basic annotator types

can be195

• Competent: Low error rate

• Spammers: Random annotations

• Adversaries: Give inverted rates

• Positively biased: Tend to give higher rates

• Negatively biased: Tend to give lower rates200

• Unary annotators: Give a single rate to all samples

• Binary annotators: Give rates at the opposite ends of the scale
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Figure 1: Real annotator examples. Each graph presents all annotations of a single annotator.
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• Ternary annotators: Give low, mid, and high ratings

These annotator types need not be mutually exclusive; an annotator may be

a combination of these types. We want to model the common behaviors of205

these annotator types. If we infer an annotator’s behavior, we can utilize this

information for our benefit. For instance, we can use competent annotators’

annotations as is, we can ignore spammers, and invert the annotations of ad-

versaries. Figure 1 shows real annotations produced by annotators of different

annotator types. The dataset from which these examples have been drawn will210

be described in Section 5.1.1. Note that, we are not trying to classify annotator

types, we incorporate the behaviors of the annotator types for designing better

models.

3. Proposed Bayesian models

In our approach, we want to cover as many diverse annotator behaviors as215

possible. We introduce two major annotator tendencies. The first one, which

we call annotator bias, explains the main behavior of positively and negatively

biased annotators. Additionally, each annotator may tend to describe a similar

set of samples in a wider/narrower range of rates. We call this second diversity

the opinion scale.220

Now, we propose four new models which handle various annotator behaviors.

We assume that every sample has a single true rate (x) and an annotator tries to

assign a rate (y) as a function of the unknown true rate (µθ(x)). The behaviors

of the annotators are incorporated into our models via the annotator parameters

(θ). Our models share a similar characteristic in the way that each annotation

is a Gaussian random variable such that

N (y;µθ(x), σ2
θ) (1)

where y represents the annotation value, x is the true rate, µθ(·) is the annotator

function, and σθ represents noise. x has a flat prior and the priors of the

annotator parameters will be introduced with our models.
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We use maximum a posteriori estimation for inferring the model parameters:

L = log p(Y |X, θ) + log p(θ) + log p(X) (2)

θ̂MAP = argmax
θ
{L} (3)

where L is the log likelihood, Y are the annotations, X are the true labels, and

θ = {θ1, . . . , θN} are the annotator parameters. The solution is obtained by

solving
∂L
∂θi

= 0,∀θi ∈ θ. (4)

The consensus rates are simultaneously inferred with the annotator param-

eters:
∂L
∂xi

= 0,∀xi ∈ X. (5)

ykθj

xi

N

R

Figure 2: Bayesian network for proposed models

3.1. Model 1: Adversary handling model (M-AH)

Raykar et al.proposed a model for continuous annotation problems [7]. Their225

model uses features from the data in addition to the annotations. They have also

adapted the same algorithm for obtaining consensus without features. Since we

don’t use features in our work, the latter version is more suitable for comparing

with our models. This adapted version assumes that an annotator labels a

sample with a rate around its true value and every annotator has a variance230

parameter of their own. This model does not deal with annotator behaviors.

As mentioned before, there might be some adversary annotators in crowd

labeling tasks. In this model, we add adversary handling to Raykar et al.’s

11



model. Along with an annotator’s annotation variance, we find whether the

annotator is an adversary or not.235

For simplicity, we assume that the annotations are zero centered in our

models. For instance, if the annotators are asked to annotate between 1 and 7,

we shift those annotations to the range -3 to 3. Table 1 presents model variables

and parameters for all models.

Table 1: Model variables and parameters

Variable Description

yk Value of the kth annotation

ik Sample index of the kth annotation

jk Annotator index of the kth annotation

xi Consensus value of the ith sample

θj Parameters of the jth annotator

N Number of samples

R Number of annotators

K Number of annotations

Nj Annotation count of the jth annotator

Y {y1:K}
X {x1:N}
θ {θ1:R}

We model the annotations as instances generated by a Normal distribution

with the mean as the consensus xi for that sample and variance σ2
θj

= 1
λj

. We

choose a Gamma prior for the parameter λj , which is a conjugate prior to the

Normal distribution. It is suitable for our problem, since we want our model to

fit the data well, but not too well to prevent overfitting. The prior on λj is

λj ∼ G (λj ;αλ, βλ) . (6)

We chose the hyperparameters αλ = 1.2 and βλ = 0.9 since we want λjs (which240

are related to noise) to be small. However, we also want them to be a bit larger
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than 0, since it is evident that no annotation task is noiseless.

We want to invert the annotation if the annotator is an adversary. For the

Normal distribution, inverting the mean is equivalent to inverting the value of

the random variable. Thus, we set the mean parameter as µθj (xi) = ajxi where

aj represents the adversariness of the jth annotator. If the annotator is an

adversary aj takes the value -1, if not it takes the value 1. The parameters of

this model are θ = {Λ, A}, where Λ = {λ1:R} and A = {a1:R}. We choose a flat

prior on A. Then the model is

p(Y,X, θ) =

K∏
k=1

p(yk|xik , λjk , ajk)

R∏
j=1

p(λj)p(aj)

N∏
i=1

p(xi)

∝
K∏
k=1

N
(
yk; ajkxik ,

1

λj

) R∏
j=1

G (λj ;αλ, βλ)

(7)

which leads to the update equations

xi =

∑
k:ik=i

λjkajkyk∑
k:ik=i

λjk
, (8)

aj = sgn

 ∑
k:jk=j

ykxik

 , (9)

λj =
Nj∑

k:jk=j

(yk − ajxik)2
. (10)

Note that, aj =
1

aj
and a2j = 1 for all aj , since aj ∈ {−1, 1}. The update

equations are simplified using these equalities.

3.2. Model 2: Scale handling model (M-SH)245

In addition to adversary handling of M-AH, we introduce opinion scale han-

dling in this model. Some annotators tend to give rates in a wider or narrower

range with respect to the ground truth. The opinion scale is represented by

w. We incorporate this behavior into the model by setting the model mean as

µθj (xi) = ajwjxi. We assume the annotators generally have a standard opin-

ion scale, so we want to favor w being close to 1. Thus, we want to select a
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distribution having 1 as its mode. As the prior for w, we select the Gamma

distribution. The prior on w is

wj ∼ G (wj ;βw + 1, βw) (11)

whose hyperparameters satisfy the mode of the distribution being equal to 1.

We chose βw = 4 so that the variance of this Gamma distribution is large enough

not to overconstrain wj and small enough to favor values around 1.

The parameters of the model are θ = {Λ, A,W}, where W = {w1:R}. Then,

we have

p(Y,X, θ) =

K∏
k=1

p(yk|xik , λjk , ajk , wjk)

R∏
j=1

p(λj)p(aj)p(wj)

N∏
i=1

p(xi)

∝
K∏
k=1

N
(
yk; ajkwjkxik ,

1

λj

) R∏
j=1

G (λj ;αλ, βλ)

R∏
j=1

G (wj ;βw + 1, βw) .

(12)

Then, the update equations are formulated as

xi =

∑
k:ik=i

λjkwjkajkyk∑
k:ik=i

λjkw
2
jk

, (13)

aj = sgn

 ∑
k:jk=j

ykxik

 , (14)

λj =
Nj∑

k:jk=j

(yk − ajwjxik)2
, (15)

wj satisfies V2w
2
j + V1wj + V0 = 0 where

V0 = −βw,

V1 = βw − λjaj
∑
k:jk=j

ykxik ,

V2 = λj
∑
k:jk=j

x2ik .

(16)

Out of the solutions of Equation 16, the root maximizing the posterior is

selected.250
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3.3. Model 3: Annotation bias sensitive model (M-ABS)

In this model, we incorporate annotation bias into M-SH. This is the bias

which is added after scaling and has an unscaled effect on the annotation. We

incorporate this behavior into the model by setting the model mean as µθj (xi) =

aj(wjxi+tj) where tj represents either positive or negative bias. Since we model

the bias as being unaffected by the opinion scale, tj is not multiplied by wj .

Moreover, we desire the prior of negative and positive bias to be symmetrical.

Thus, we find the Normal distribution suitable for our needs, resulting in the

prior

tj ∼ N
(
tj ;µT , s

2
T

)
. (17)

We want the mode of the bias distribution to be at 0. We favor unbiased

annotators. However, a consistent annotator with very low noise and a slight

bias would be dismissed by having too much noise if the bias parameter is strictly

constrained at 0. We set its standard deviation sT = 0.05 to allow some positive255

and negative bias.

The parameters for this model are θ = {Λ, A,W, T}, where T = {t1:R} and

the model is defined as

p(Y,X, θ) =

K∏
k=1

p(yk|xik , λjk , ajk , wjk , tjk)

R∏
j=1

p(λj)p(aj)p(wj)p(tj)

N∏
i=1

p(xi)

∝
K∏
k=1

N
(
yk; ajk(wjkxik + tjk),

1

λj

) R∏
j=1

G (λj ;αλ, βλ)

R∏
j=1

G (wj ;βw + 1, βw)

R∏
j=1

N
(
tj ;µT , s

2
T

)
(18)

which yields the following update equations

xi =

∑
k:ik=i

λjkwjk(ajkyk − tjk)∑
k:ik=i

λjkw
2
jk

, (19)

aj = sgn

 ∑
k:jk=j

yk(wjxik + tj)

 , (20)
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λj =
Nj∑

k:jk=j

(yk − aj(wjxik + tj))
2
, (21)

tj =

aj
∑
k:jk=j

yk − wj
∑
k:jk=j

xik +
µT
λjs2T

Nj + 1
λjs2T

, (22)

wj satisfies V2w
2
j + V1wj + V0 = 0 where

V0 = −βw,

V1 = βw − λj
∑
k:jk=j

(ajyk − tj)xik ,

V2 = λj
∑
k:jk=j

x2ik .

(23)

Out of the solutions of Equation 23, the root maximizing the posterior is

selected.

3.4. Model 4: Consensus bias sensitive model (M-CBS)

In this model, we incorporate consensus bias into M-SH. This is the bias

which is affected by the annotator’s scaling parameter. Since we model the bias

as being affected by the opinion scale, tj is multiplied by wj in contrast to M-

ABS. We incorporate this bias behavior into the model via setting the model

mean as µθj (xi) = ajwj(xi + tj). The prior on tj is the same as in M-ABS. In

this model, we also assume that the noise introduced by an annotator is affected

by their opinion scale. We achieve this effect by scaling the standard deviation

of the model with the parameter wj , resulting in the variance σ2
θj

=
w2
j

λj
. The

parameters are again θ = {Λ, A,W, T}. Thus, we have

p(Y,X, θ) =

K∏
k=1

p(yk|xik , λjk , ajk , wjk , tjk)

R∏
j=1

p(λj)p(aj)p(wj)p(tj)

N∏
i=1

p(xi)

∝
K∏
k=1

N
(
yk; ajkwjk(xik + tjk),

w2
jk

λjk

)
R∏
j=1

G (λj ;αλ, βλ)

R∏
j=1

G (wj ;βw + 1, βw)

R∏
j=1

N
(
tj ;µT , s

2
T

)
.

(24)
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The update equations are calculated as

xi =

∑
k:ik=i

λjk

(
ajkyk
wjk

− tjk
)

∑
k:ik=i

λjk
, (25)

aj = sgn

 ∑
k:jk=j

yk(xik + tj)

 , (26)

λj =
Nj∑

k:jk=j

(
yk
wj
− aj(xi + tj)

)2 , (27)

tj =

aj
wj

∑
k:jk=j

yk −
∑
k:jk=j

xik +
µT
λjs2T

Nj + 1
λjs2T

, (28)

wj satisfies V3

(
1

wj

)3

+ V2

(
1

wj

)2

+ V1

(
1

wj

)
+ V0 = 0 where

V0 = −βw,

V1 = βw −Nj ,

V2 = −λjaj
∑
k:jk=j

yk(xik + tj),

V3 = λj
∑
k:jk=j

y2k.

(29)

Out of the solutions of Equation 29, the root maximizing the posterior is260

selected.

4. Annotator competence scoring

So far, we have proposed novel Bayesian models with the purpose of ex-

tracting more reliable consensus from annotations via incorporating annotator

behaviors. Unfortunately, some people try to abuse the crowdsourcing system265

for easy money. The results are either random annotations that do not provide

any solid information or ill-intentioned/absent-minded annotators marking the

opposite of what they think. Naturally, one would expect to achieve a better

consensus with more annotations. However, increasing annotations will also
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increase costs. Due to these challenges, an annotator scoring mechanism is ben-270

eficial for both improving consensus quality and reducing annotation costs by

weeding out low quality annotators. Throughout this paper we have been in-

terested in using a group of annotators to infer the label of a sample. Using the

annotator scoring mechanism to select individually good performing annotators

will help us increase the crowd performance.275

Now, we derive an annotator scoring function using the annotator parame-

ters that we introduced in our models. The annotator score that we define is the

sum of the joint probabilities of all possible annotations that can be produced

by an annotator and the most probable originating label for those annotations

given the annotator parameters. In Equation 1, we defined µθ(·) as the anno-280

tator function and in Table 2, we show these functions for each of our models.

Suppose that we have annotations of only a single annotator in our dataset.

Although it is not the case in real annotation scenarios, let us also suppose that

we are given the parameters θ of this annotator (Normally, we would infer these

parameters using our models.) Given an annotation y of this annotator, we

can use the inverse of the annotator function and try to obtain the originating

label x. Because of σθ, the obtained value µ−1θ (y) may not be equal to the

originating label x. However, we can calculate the probability that the obtained

value is indeed the true label as p(x = µ−1θ (y)|y, θ). This probability defines the

accuracy of obtaining the original label of a given sample using only a single

annotator. By incorporating the probability p(y|θ) of encountering the sample

of interest, we obtain the joint probability of x and y conditioned on θ:

p(x = µ−1θ (y), y|θ) = p(x = µ−1θ (y)|y, θ)p(y|θ)

= p(y|x = µ−1θ (y), θ)p(x = µ−1θ (y))

= N (y;µθ(µ
−1
θ (y)), σ2

θ)
1

2c

=
1

2cσθ
√

2π

(30)

where x ∈ [−c, c] and p(x) = 1
2c since it is flat. c is a problem specific constant

for defining the annotation range. Recall that, we also shift annotations to fit
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in the [−c, c] range, as we explained in Section 3.1. Therefore, we have the

following constraints:285

−c ≤ y ≤ c,

−c ≤ x = µ−1θ (y) ≤ c.

For all of our models, µθ(x) is monotonically increasing if and only if aθ = 1,

and monotonically decreasing if and only if aθ = −1. Thus, we have

−c ≤ µ−1θ (y) ≤ c =⇒

µθ(−c) ≤ y ≤ µθ(c), if aθ = 1

µθ(−c) ≥ y ≥ µθ(c), if aθ = −1

=⇒ aθµθ(−c) ≤ aθy ≤ aθµθ(c). (31)

By symmetry, we also have

−c ≤ y ≤ c =⇒ −c ≤ aθy ≤ c. (32)

From Inequalities 31 and 32, we have

min{c,max{aθµθ(−c),−c}}︸ ︷︷ ︸
dθ

≤ aθy︸︷︷︸
r

≤ max{−c,min{aθµθ(c), c}}︸ ︷︷ ︸
eθ

. (33)

Note that, r = aθy =⇒ y = r
aθ

=⇒ y = aθr, since aθ = 1
aθ
, ∀aθ ∈ {−1, 1}.

We can define a path for the tuple (x = µ−1θ (y), y) on the joint distribution

as follows

l : [dθ, eθ]→ R2

r 7→ (x(r), y(r)) =⇒ r 7→ (µ−1θ (aθr), aθr)
(34)

We are interested in this path since it contains all possible annotations y

that can be produced by an annotator, coupled with the estimations µ−1θ (y) for

the originating labels.

We define the annotator score S(θ) as the sum of the joint probabilities along
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the path l:

S(θ) =

∫
l

p(x, y|θ)ds

=

∫ eµθ

dµθ

p(µ−1θ (aθr), aθr|θ)‖l′(r)‖dr,

=
1

2cσθ
√

2π

∫ eµθ

dµθ

‖l′(r)‖dr.

(35)

Figure 3 portrays the annotator behavior deduced from the θ parameters for290

a selected annotator. This figure is provided for visualizing the annotator score

calculation and its sub-elements. Brighter areas indicate a higher probability

p(y|x, θ). For example, an annotation y = 0 most possibly originated from

x = −0.25 with the probability p(y|x, θ) = 0.30902. The originating label being

anything other than −0.25 is still possible, but less probable. The score is the295

sum of these probabilities along the red line for every possible y.

Table 2 shows the derived annotator score formulas for the proposed models.

Note that, dµθ and eµθ depend on the related model’s µθ(·) function and their

definition is given in Equation 33. It is also notable to mention that S(θ) does

not depend on annotations or samples; it only depends on the parameters of the300

annotator.

Table 2: Annotator score formulas for the proposed models

Model µθ σ2
θ ‖l′(r)‖ S(θ)

M-AH ax
1

λ

√
2

√
λ

π
(eµθ − dµθ )

M-SH awx
1

λ

√
1 +

1

w2

1

w

√
λ(1 + w2)

2π
(eµθ − dµθ )

M-ABS awx+ t
1

λ

√
1 +

1

w2

1

w

√
λ(1 + w2)

2π
(eµθ − dµθ )

M-CBS aw(x+ t)
w2

λ

√
1 +

1

w2

1

w2

√
λ(1 + w2)

2π
(eµθ − dµθ )

In Figure 4, we demonstrate the change in annotator scores using the for-
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y = −1 ⇒µ−1
θ (y) = −1.5

p(y|x = µ−1
θ (y), θ) = 0.30902

y = 0 ⇒µ−1
θ (y) = −0.25

p(y|x = µ−1
θ (y), θ) = 0.30902

‖l′(r)‖(eµθ
− dµθ

) = 7.6837 (Length of the red line)
S(θ) = 0.39574 (Annotator score)
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Figure 3: Score calculation for an annotator with parameters a = 1, w = 0.8, t = 0.2, λ = 0.6.

The annotator is modeled using M-ABS. The intensity values depict the probability of the

annotator rating a sample with respect to the ground truth. Brighter areas indicate a higher

probability. This means the annotator will operate close to, but around the red line.
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Figure 4: The change in annotator scores with respect to w and t parameters of M-CBS when

the variance is fixed. Higher intensities correspond to higher annotator scores.
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mulas for M-CBS with respect to w and t when the variance is fixed. When

selecting our priors, we preferred w to be around 1 and t to be around 0. By

examining Figure 4, we can observe that our scoring mechanism reflects our305

constraints successfully. When w is very small, it means that the annotator

is giving rates in a narrow range providing very little to no information. If an

annotator marks every sample with the same rate, it does not matter which rate

they give. In this case, the effect of t diminishes and the annotator scores do not

vary for different t. In the case where w is large, the annotator rates the samples310

whose ground truths are similar to each other in a very wide range. This is an

unwanted behavior and even if the annotator is unbiased, their score will not

be high since their annotations easily deviate under the smallest of changes.

5. Experimental Validation

In this section, we first evaluate the performance of our models on an anno-315

tation dataset with ground truth. We show how accurately the consensus values

found by our models estimate the ground truth. Additionally, we discuss the

effect of the annotators on consensus values.

In the second part, we use our models’ consensus values for creating training

and test scores/labels for a regression and a binary classification task and com-320

pare the performance of the trained regression and classification models, with

respect to the model that is used to produce consensus scores.

5.1. Results on real data with ground truth

5.1.1. Collecting crowdsourced data with ground truth

For evaluating our models properly, we needed an annotation dataset with325

ground truth. We have decided to use a dataset of face images which also has

the ground truth age information of the subjects in the pictures. We found

the FGNet Aging Database [31] suitable for our needs. The dataset consists

of a total of 1002 pictures from 82 subjects. The age range of the dataset is

0–69. Figure 5 shows some samples from this dataset and Figure 6 shows the330
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age histogram of the dataset. The dataset consists mostly of baby, child, and

young adult photos.

Figure 5: Sample images from the FGNet Aging Database

For the annotation task, we prepared a questionnaire in which we show a

facial picture and ask the annotator to rate the age of the person in the picture.

The annotators are asked to rate the age from 1 to 7 where a lower rate means335

young and a higher rate means old. We used CrowdFlower [3] for collecting the

annotation data and executed two sets of data collection. In the first set, a task

for an annotator consisted of 10 annotations which means that the annotators

were asked to annotate a batch of 10 images. However, if they desired they

could annotate more than one batch. In the second set, a batch consisted of340

15 annotations. In both sets, we set the system up to collect 5 annotations

per sample. Table 3 shows annotation counts for these two sets and their joint

set. The table describes the frequency of annotators’ annotations. For example,

there are 208 annotators in Set 1 that have provided 10 annotations and there

are 292 annotators in Set 2 that have provided 15 annotations. It can be seen345

that not all of the annotation counts per annotator are multiples of 10 or 15.

This is because the system decides to collect fewer annotations when the ‘5

annotations per sample’ criterion is met.
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Figure 6: The FGNet Aging Database Age Histogram

Table 3: Annotator workload (the number of annotations made by an annotator)

Annotator
workload

Number of annotators

Set 1 Set 2 Joint

1 2 4 6

6 0 1 1

7 1 0 1

9 2 0 2

10 208 0 208

11 1 0 1

14 1 0 1

15 0 292 292

16 0 1 1

19 1 0 1

20 82 0 82

Annotator
workload

Number of annotators

Set 1 Set 2 Joint

29 1 1 2

30 26 12 38

31 1 0 1

33 0 1 1

36 1 0 1

40 5 0 5

42 0 1 1

43 0 1 1

45 0 1 1

50 3 0 3

59 0 1 1
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5.1.2. How accurately do the models estimate ground truth?

In order to evaluate the estimation accuracy of our models, we compare350

the estimated consensus values against the ground truth. However, since the

consensus values are in the range of 1 to 7, we need to rescale them to be

compatible with the ground truth values.

The error metrics that we use in this work are Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE), which are defined as follows:

MAE =
1

N

N∑
i=1

|g(xi)− zi| (36)

RMSE =

√√√√ 1

N

N∑
i=1

(g(xi)− zi)2 (37)

where zi is the ground truth value of the ith sample and g(·) is the linear

scaling function from the consensus domain to the ground truth range. Different355

types of problems may require different scaling approaches. However, for the

age mapping problem linear scaling is simple and intuitive. Since we map the

consensus values [1, 7] to the ground truth value range [0, 69], the unit of error

is in years of age. Note that, because of the discretization process even if the

consensus values were exactly the same as the discretized ground truth labels,360

the error would not be zero. We call this error the baseline error for this dataset.

In order to compare the performance of the models among themselves, we

conduct one-tailed paired-t tests with significance level α = 0.05 for every model

pair. We repeated each experiment 100 times, each time starting with randomly

initialized parameters in accordance with their prior distributions. By repeating

the experiments 100 times, we show that the initial parameter values (drawn

from their prior distributions) do not affect the convergence of the results. The

results showed us that the statistically significant order of performance is:

Mean < Median < Raykar[7] < M-AH < M-SH = M-ABS < M-CBS.

The tests between M-SH and M-ABS are inconclusive.

Table 4 shows mean errors and standard deviations for the proposed and

reference models. M-CBS outperforms all other models for all sets. Simpler
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Table 4: Errors on Set 1, Set 2 and the joint set. The results are presented as mean and

standard deviation for 100 repetitions.

(a) Mean absolute error (baseline=2.92)

Model Set 1 Set 2 Joint

Mean 9.68 8.95 8.91

Median 8.34 7.94 7.39

Raykar[7] 7.20 ± 0.048 6.94 ± 0.062 6.46 ± 0.019

M-AH 6.59 ± 0.002 6.35 ± 0.001 6.06 ± 0.000

M-SH 6.06 ± 0.112 6.04 ± 0.098 5.56 ± 0.087

M-ABS 6.07 ± 0.116 6.04 ± 0.103 5.58 ± 0.083

M-CBS 5.91 ± 0.011 5.84 ± 0.006 5.36 ± 0.008

(b) Root mean square error (baseline=3.40)

Model Set 1 Set 2 Joint

Mean 12.10 11.50 10.90

Median 10.92 10.55 9.58

Raykar[7] 9.57 ± 0.052 9.18 ± 0.073 8.52 ± 0.020

M-AH 8.71 ± 0.003 8.49 ± 0.001 8.04 ± 0.000

M-SH 8.54 ± 0.146 8.37 ± 0.128 7.68 ± 0.100

M-ABS 8.55 ± 0.150 8.40 ± 0.134 7.70 ± 0.101

M-CBS 8.35 ± 0.016 8.13 ± 0.010 7.50 ± 0.010
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models are prone to errors arising from outliers. Since the median model is more365

robust to outliers than the mean model, it performs slightly better. However, in

the case of crowd labeling where lots of outliers are expected, the median model

also fails to perform successfully.

The results of Set 2 are slightly better than that of Set 1. The reason for

this might be that, the second set of annotators rated the samples in batches370

of 15 rather than 10, or they just might be more competent. Note that the

proposed models do not make any assumptions on the number of samples that

each annotator should annotate. However, the more annotations we gather from

an annotator, the more about the annotator’s behavior we can learn. One would

expect a better modeling when there are more annotations from an annotator.375

Further examination of this phenomenon is beyond the scope of this study and

is left as a future work.

The best performance is achieved in the joint set. Remember that, each sam-

ple is annotated by 5 annotators in Sets 1 and 2, which results in 10 annotations

per sample in the joint set. Having more annotations per sample decreases the380

effect of incompetent annotators and helps to achieve better consensus values.

When we investigate the samples with high error, we observe that most anno-

tators actually do have an agreement. However, this agreement is very different

from the ground truth. This is due to the fact that some samples are actually

very hard to annotate where the subjects in question look much younger or385

older than their real age.

In Figure 7, we show the cumulative match curves (CMC) of the models.

The y coordinate of a point on the CMC is the ratio of the samples that have less

error than the related x coordinate. If we are interested in the consensus being in

the 5–year vicinity of the ground truth, we fix the x coordinate at 5 and observe390

the y coordinate values of each model. 59.88% of the sample consensus values

obtained with M-CBS fall within the 5–year error range of the ground truth

values. When we observe the curves, Models 2, 3, and 4 perform very similarly

in terms of maximum absolute age error, with M-CBS being marginally better.

Figure 8 shows the models’ ground truth estimation performances of each395
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Figure 7: Cumulative match curves for the models.

sample for the joint set. As we can see, the annotations by themselves contain

a huge amount of noise and do not fit to the ideal line. Using even the simplest

of models allows us to reach an acceptable consensus with respect to the ground

truth. We observe that the mean model has a tendency to contain more noise

around the ideal line, especially in the 0–20 range. Observing Raykar et al.’s400

model, we see that it has characteristics belonging to both the mean and median

models. This is due to the fact that the annotators are modeled after the normal

distribution with the consensus being their mean. The tail sections of the normal

distribution provide the outlier elimination power of the median model. The four

models that we have proposed perform better as the model complexity increases.405

The number of iterations until convergence are given in Table 5. As it can be

observed from the table, M-CBS converges faster than M-SH and M-ABS.The

reason for this is the scaling of the standard deviation with “w”. This way

M-CBS fits better and converges faster.

5.1.3. How beneficial is annotator scoring?410

In Section 4, we discussed the importance of identifying competent annota-

tors and proposed a scoring metric. Now, we elaborate on the annotator scores
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Figure 8: Ground truth estimation performance of models on joint set annotation data (The

perfect fit would be on the diagonal)
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Table 5: Number of iterations until convergence (100 repetitions)

Mean Std Dev. Min Max

Raykar[7] 10.02 0.556 8 12

M-AH 14.47 0.554 13 15

M-SH 45.03 4.540 16 54

M-ABS 41.03 6.649 14 54

M-CBS 12.24 2.437 8 32

calculated on real data for different models and how to make use of these scores.
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Figure 9: Annotator score histograms for the proposed models

First, we show the robustness of our scoring mechanism across different

models. Figure 9 shows annotator score histograms for the models proposed415

in this work. It is evident that the shapes of the histograms are similar for all

models. In addition, the median score improves slightly with increasing model

complexity. The reason for this behavior is that, a higher complexity model
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finds a higher quality consensus in which the annotators’ individual opinions

are represented better.420
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Figure 10: Annotator score comparison for the proposed models

In Figure 10, we observe the scores of every annotator for each model. For

each annotator, we find the mean of the scores estimated by our proposed mod-

els. The annotators are sorted by these values for the sake of better visuality.

The scoring mechanism usually agrees on similar scores for an annotator when

employed with different models. In this figure, there are 2496 scores plotted,425

in which roughly 70 are outliers. Most of the scores follow the S–shaped trend.

We also observe that for all models the scoring mechanism agrees on pointing

out the most incompetent annotators, which explains the less scattered values

at the tail section.

Figure 11 presents the annotations of the top scoring 50% and 10% of the430

annotators, respectively. We observe that the better the annotators, the better

the annotations fit the ideal line. The scoring mechanism proves useful in elim-

inating the annotators who have given opposite or random rates to samples, as

previously shown in Figure 8. It is notable to mention that, although choosing

the top 10% of the annotators seems favorable, eliminating the annotators leaves435

some of the samples unrated, which is not desired. Thus, in the remainder of
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Figure 11: The annotations of (a)top 50% (b)top 10% scoring annotators.

this analysis we present our findings from the top 50% of the annotators, where

each sample is rated by at least one annotator. However, if the crowd labeling

task were to be continued, we would ask the top 10% to annotate more samples

for solving the unrated sample problem.440

Table 6: Utilizing annotator scores: Errors after using only top scoring and only bottom scor-

ing annotators. The results are presented as mean and standard deviation for 100 repetitions.

Model
MAE RMSE

Top 50% Bottom 50% Top 50% Bottom 50%

Mean 5.56 13.49 7.61 16.29

Median 6.19 12.63 8.16 16.30

Raykar[7] 6.13 ± 0.037 12.44 ± 0.019 8.25 ± 0.044 15.34 ± 0.021

M-AH 5.65 ± 0.000 11.25 ± 0.072 7.70 ± 0.000 13.93 ± 0.066

M-SH 5.60 ± 0.075 10.06 ± 0.285 7.76 ± 0.082 13.84 ± 0.288

M-ABS 5.60 ± 0.078 10.12 ± 0.337 7.76 ± 0.085 13.86 ± 0.335

M-CBS 5.52 ± 0.000 10.18 ± 0.091 7.65 ± 0.000 13.76 ± 0.094

Table 6 shows the model errors obtained from employing top and bottom

50% scoring annotators. After separating 50% of the annotators, we re-infer the

consensus values for each subset and report the related error for each model.

Sets 1 and 2 have 5017 annotations each, resulting in 10034 annotations in the
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joint set. Total annotation count of top 50% annotators is 5140. Although,445

the amount of annotations of this subset is similar to Sets 1 and 2, the model

performances are almost as successful as the joint set. Since the top scoring

annotators provide a better representation of the consensus, using a very simple

model such as taking the mean produces very satisfactory results. For the mean

model, we achieve substantially better results with approximately half of the450

annotations when we utilize only the top scoring annotators.

Although we strive to single out the most competent annotators, perfect

annotations would result in obtaining the baseline error that we have discussed

earlier. However, a little variance and annotator diversity would be preferable

for beating the baseline. Since the ground truth values (∈ {0, . . . , 69}) have455

more precision than the annotation values (∈ {1, . . . , 7}) for this dataset, a

better estimate can be obtained with increased variance in annotations.

5.1.4. Performance on binary labels

In many crowd labeling tasks, ordinal annotations are requested for binary

labeled data. In these tasks, the annotators are usually asked to rate the degree460

of negativity or positivity of the sample. Then, continuous or ordinal valued

annotations are binarized to make them compatible with methods accepting

binary input. Unfortunately, this binarization process results in the loss of

valuable information.

We designed our models to accept continuous and ordinal annotations. When465

we sought binary output labels, we used a threshold for the binarization of

continuous consensus values estimated from the proposed models (i.e. model

output).

We compare our binary label fitting performance with Welinder et al.’s [14]

work. Their method is suitable comparison since they use a data independent470

approach (i.e. they don’t use features) and do not have a training phase. When

evaluating their work, we binarize the input annotations with a threshold of 4.

For our methods, we use the annotations as they are and binarize the output

consensus values with the same threshold value. The general intuition is to
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Table 7: The Matthews correlation coefficient, sensitivity, specificity, and accuracy measures

for binarized results. For Welinder[14] results, the input annotations are binarized, and for

the other models the resulting consensus values are binarized. The results are presented as

mean and standard deviation for 100 repetitions.

Model Input MCC Accuracy Sensitivity Specificity

Welinder[14] Binarized 0.427 ± 0.009 0.718 ± 0.009 0.686 ± 0.010 1.000 ± 0.002

Mean Ordinal 0.521 0.814 0.796 0.980

Median Ordinal 0.491 0.782 0.758 1.000

Raykar[7] Ordinal 0.614 ± 0.001 0.880 ± 0.000 0.871 ± 0.000 0.961 ± 0.001

M-AH Ordinal 0.626 ± 0.000 0.884 ± 0.000 0.874 ± 0.000 0.971 ± 0.000

M-SH Ordinal 0.644 ± 0.007 0.896 ± 0.003 0.888 ± 0.003 0.961 ± 0.005

M-ABS Ordinal 0.642 ± 0.008 0.895 ± 0.003 0.887 ± 0.004 0.961 ± 0.005

M-CBS Ordinal 0.648 ± 0.002 0.897 ± 0.001 0.890 ± 0.001 0.961 ± 0.000

choose the median value during the binarization process. This is the reason for475

chosing 4 as the threshold value from the range 1–7.

In order to calculate the binary classification error, we also binarized the

ground truth labels of the FGNet Aging Database to be ‘young’ when they are

less than 35, and ‘old’ otherwise.

In Table 7, we present the Matthews correlation coefficient(MCC), sensitiv-

ity, specificity, and accuracy values. The Matthews correlation coefficient is a

balanced statistical measure that is extracted from the confusion matrix. It can

be used even if the classes are of very different sizes and symmetric in the sense

of positive and negative classes. Its value is between -1 and 1 where 1 is a result

of perfect prediction. It is calculated as

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(38)

where TP is the number of true positives, TN is the number of true negatives,480

FP is the number of false positives and FN is the number of false negatives.

For two class problems, sensitivity and specificity values interchange when

the class labels are interchanged. For these types of problems, they are only

meaningful as a pair. As for the accuracy, it is strongly affected by unbalanced

class sizes. Thus, out of these four statistical measures, MCC is the most suitable485

34



measure for our problem because of its symmetry and balance.

When we analyze the results, we observe better MCC and accuracy values for

M-CBS. Welinder[14] performs worse than the methods that accept continuous

annotations, since it ignores lots of valuable information when binarizing the

input annotations.490
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Figure 12: Change in error with respect to the change in consensus binarization threshold

In addition, we investigate the effect of different values of the consensus

threshold for binarization in Figure 12. Although the value 4 would be expected

to be the best threshold, we observe that 5 is a better threshold for this data.

It can be deduced that the threshold selection for binarization has important

effects on the final accuracy of the ground truth estimation and the best value495

depends on the data.

5.1.5. Discussion on global bias

With a careful look into Figures 8 and 12, one can observe that there is a

positive bias in the annotations: the annotation scores are slightly above the

ideal fit line. If we set the mean (µT ) of the bias parameter(t)’s prior accordingly,500

we can decrease the global bias effect of the annotators. We empirically found

that by setting µT = 0.7, we would have better results. Note that, this is
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only an observation of the annotations data and depends on the dataset; it is

not an improvement for the models. We were able to observe this global bias,

since we were in possession of the ground truth. Table 8 shows errors when the505

global bias is compensated for. The errors reduce drastically when this effect is

removed.

Table 8: Compensating for global bias: Errors of M-ABS and M-CBS with µT = 0.7. The

results are presented as mean and standard deviation for 100 repetitions.

(a) Mean absolute error

Model Set 1 Set 2 Joint

M-ABS (µT = 0.7) 4.52 ± 0.120 4.69 ± 0.102 4.24 ± 0.077

M-CBS (µT = 0.7) 4.44 ± 0.012 4.57 ± 0.007 4.14 ± 0.010

(b) Root mean square error

Model Set 1 Set 2 Joint

M-ABS (µT = 0.7) 6.06 ± 0.114 6.14 ± 0.119 5.45 ± 0.079

M-CBS (µT = 0.7) 5.91 ± 0.012 5.91 ± 0.007 5.33 ± 0.009

In Figure 13, we observe that the models estimate the ground truth better

after we take the global bias into account. In Figure 13a and Figure 13b, the

estimated consensus scores are closer to the ideal fit line. In the CMC plot in510

Figure 13c, we see that the models perform much better after the 5-year error

range. For the 10-year error range, the ratio shifts from 83% to 94%, when

we compensate for the global bias with µT = 0.7. Moreover, the binarization

threshold shifts to four as one would expect (see Figure 13d).

An explanation of why this global bias exists for the FGNet annotations515

could be related to the age range in the dataset. In the crowdsourcing phase,

the annotators were not informed about the age range of the subjects in the

dataset. Most of the annotators only saw young samples, since younger photos

are in majority. Thus, the annotators were inclined to give higher ratings to
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Figure 13: Effect of removing global bias on the consensus scores
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younger people. Since the annotators would expect the minimum age to be520

zero, they were more successful in annotating younger samples. Refraining

from informing the annotators about the age range was intentional. Our aim is

to obtain annotations where the actual score range is not exactly known by the

annotators. An example for such cases is annotations for human traits, such as

personality, which we investigate in the next section.525

5.2. Results on real data without ground truth

In this section, we analyze the performance of the annotator models on a real

dataset where there is no actual ground truth. We use the personality impres-

sions as our domain where the annotations are highly subjective. We evaluated

the performance of the annotator models on a regression and a classification530

task to predict the extraversion trait based on the consensus scores estimated

by each model.

5.2.1. Personality Impressions Data

In parallel to the increasing existence of computers, robots, and machines

equipped with various multimodal sensors in our daily lives, there is also an535

increasing interest in building automatic systems that are capable of inferring

and predicting traits of people. One of these traits, personality, defines an

individual’s distinctive character as a collection of consistent behavioral and

emotional traits. The Big Five model has been the widely used model, which

factors personality into five different dimensions (i.e., extraversion, agreeable-540

ness, conscientiousness, emotional stability, and openness to experience). While

some of those dimensions are apparent in brief observations, some others are

not. For those dimensions of personality, the personality is evident in and can

be predicted from people’s verbal and nonverbal behavior in brief segments

[10, 32, 35].545

As a dataset to study personality, we used a subset from the Emergent

LEAder (ELEA) corpus [36]. The ELEA AV subset consists of audio-visual

recordings of 27 meetings, in which the participants perform a winter survival
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Table 9: Personality annotations per annotator on the ELEA data

Ann 1 91

Ann 2 83

Ann 3 77

Ann 4 49

Ann 5 6

task with no roles assigned. The winter survival task is a simulation game

where the participants in the task are the survivors of an airplane crash. They550

are asked to rank 12 items to take with them to survive as a group. Partic-

ipants first ranked the items individually; then, as a group. The task itself

is designed such that it promotes interactions among the participants in the

group. The discussion and negotiation parts of the interaction present cues on

the personality of the participants, making it a suitable database to study per-555

sonality prediction. There are 102 participants in total in the ELEA AV subset.

Each meeting lasts approximately 15 minutes and is recorded with two webcams

and a microphone array. More details about the ELEA corpus can be found in

[36, 37].

For each participant in the dataset, the personality impressions are obtained560

from external observers[32]. Ten Item Personality Inventory (TIPI) is used for

measuring the Big Five personality traits of the participants [38]. The TIPI

questionnaire includes two questions per trait, answered on a 7-point Likert

scale. The score for each trait is also calculated on a scale of one to seven.

For each participant, a one-minute segment is selected from the meeting, which565

corresponds to the segment that includes the participant’s longest turn. Each

participant was annotated by three different annotators, with a total of five an-

notators annotating the whole dataset. Table 9 shows the number of annotations

per annotator. More details on the annotations can be found in [32].
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5.2.2. Predicting personality impressions using nonverbal cues570

The nonverbal cues that we display in our everyday life, particularly dur-

ing our interaction with others, contains significant information regarding our

personality [39]. Psychologists have long investigated the links between the non-

verbal cues that we display and our personality traits and showed that several

dimensions of personality is expressed through voice, face, body in the nonverbal575

channel [40]. In social computing literature, predicting personality using auto-

matically extracted nonverbal cues has been addressed in several recent studies

[32, 35, 10].

We use the data that is used in [32] where a large set of audio-visual nonver-

bal features are extracted and used in the prediction of personality. The set of580

features include features such as speaking turn features (speaking length, num-

ber of turns, turn duration), prosodic features (energy, pitch), visual activity

features, and visual focus of attention features. More detail can be found in

[32]. For the current study, we use a concatenation of all the features used in

[32] when training our regression models.585

We only focus on the extraversion trait for the purposes of this study. We

first perform a regression task where the goal is to estimate the personality

impression score. Secondly, we perform a binary classification task where the

goal is to predict whether the person is high or low in extraversion. The median

of the scores is used as the cut-off point for binarization.590

We use linear Ridge regression for estimating the personality impression

scores and report the Relative Absolute Error (RAE) on a leave-one-out cross

validation setting. RAE is calculated as:

RAE =

∑N
i=1 |pi − ai|∑N
i=1 |āi − ai|

(39)

where p is the score predicted by the regression model and a is the annotator

consensus score as estimated by the annotator model.

For binary classification, we used the estimated scores by the regression

models and labeled the samples as high and low based on the cut-off point. We

report the classification accuracy.595
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5.2.3. Comparsion of annotator models’ performance on the regression and clas-

sification tasks

We perform regression and classification to predict personality impressions

using the consensus scores estimated by different annotator models. It is impor-

tant to note that the consensus scores of different models could have different600

ranges and scales. While one model provides consensus scores in the range of 1

to 7, another model’s scores could be in the range 1 to 6. As a metric which is

less sensitive to such differences, we use RAE to compare the regression perfor-

mances.

Table 10: Regression and classification results on extraversion prediction

RAE
Classification
Accuracy (%)

Mean 0.78 72.55

Median 0.82 70.59

Raykar[7] 0.88 63.73

M-AH 0.86 67.65

M-SH 0.77 74.51

M-ABS 0.77 75.49

M-CBS 0.77 73.53

The results are given in Table 10. We see that the lowest errors are obtained605

with consensus scores estimated by M-CBS, followed by M-ABS and M-SH.

When it comes to the classification accuracy, the observations are different and

not directly inline with the regression errors. The highest accuracy is achieved by

M-ABS, followed by M-SH and M-CBS. The reasoning behind this observation

could be related to the binarization of the scores. The errors of the regression610

models for the samples that are close to the cut-off point directly affect the

classification accuracy. Even if a regression model has a low RAE, if the errors

are concentrated around the cut-off point, a lower classification accuracy could

be observed.
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6. Conclusions615

In this paper, we proposed four Bayesian models for obtaining consensus

in continuous valued crowd labeling tasks by taking annotator behaviors into

account. We also introduced a novel metric for measuring annotator quality. We

acquired annotation data on a dataset with known ground truth for evaluating

the performance of the proposed models. In addition, we adapted our methods620

to work with binary labeled data and reported their performance.

We observed various annotator behaviors and successfully compensated for

this versatility with the use of scale and bias parameters. The error rates show

that our methods perform better in estimating the consensus score than widely

used methods. We also showed that it is possible to select competent annotators625

using our metric and keep the consensus error rate the same while reducing

labeling costs by 50%. On a personality impressions dataset, where there is no

ground truth to compare the estimated consensus scores, we have observed that

the consensus scores obtained with the proposed models lead to lower regression

errors in comparison to the widely used methods.630

We have made several important observations in the course of this work.

First of all, the samples that are hard to rate result in misleading most of the

annotators where the consensus value does not agree with the ground truth. In

crowdsourced efforts, this problem is inevitable. Another observation is that,

the annotators may tend to be biased as a whole due to the nature of the labeling635

problem. Informing the annotators about the opposite ends of the scale that

occur in the dataset is important for alleviating the global bias problem, where

possible.
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