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Action Recognition vs. Action Detection

• The two concepts are usually confused.

• Detection answers the question:
“Is there an action in this sequence?”

• Recognition answers the question:
“What is the action, given that there exists an action in this
sequence?”

• In this work, we deal with the recognition of actions.
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Challenges

Action variations

• Actions can have large variations in performance
• An action can differ in speed
• Stride length can differ

• Antropometric differences

• Avoiding obstacles

• Temporal variations
• Segmenting the actions in time is difficult
• The length of an action can differ for different people
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Challenges

Environment and recording settings

• Person localization: Harder in cluttered or dynamic
environments

• Dynamic backgrounds
• Moving camera

• Parts of the person can be occluded

• Lighting conditions can affect appearance

• An action has different observations for different viewpoints
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Approaches

Global Representations

• Person is localized first

• The region of interest is encoded as a whole

• Bobick and Davis1 use MEI and MHI for recognizing actions

• Efros et al.2 calculate optical flow measurements

• Gorelick et al.3 stack silhouettes of the consecutive frames to
form spacetime volumes.

1
Bobick, A. and J. Davis, “The recognition of human movement using temporal templates”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 3, pp. 257-267, Mar. 2001.
2

Efros, A. A., A. C. Berg, G. Mori and J. Malik, “Recognizing action at a distance”, Proceedings Ninth IEEE
International Conference on Computer Vision, Vol. 2, No. October, pp. 726-733, 2003.

3
Gorelick, L., M. Blank, E. Shechtman, M. Irani and R. Basri, “Actions as spacetime shapes.”, IEEE

transactions on pattern analysis and machine intelligence, Vol. 29, No. 12, pp. 2247-2253, Dec. 2007.
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Approaches

Local Representations

• Some patches in the images are encoded separately

• Patches are extracted from the neighborhoods of keypoints

• The representation is found by combining the information of
the patches

• Laptev 4 proposed space-time interest points by extending the
Harris interest point detector to 3D

• Willems et al.5 use integral videos to find salient points.

• Sun et al.6 find SIFT descriptors and track interest points
using these descriptors.

4
Laptev, I., “On Space-Time Interest Points”, International Journal of Computer Vision, Vol. 64, No. 2-3, pp.

107-123, Sep. 2005.
5

Willems, G., T. Tuytelaars and L. Van Gool, “An efficient dense and scale-invariant spatio-temporal interest
point detector”, Computer Vision ECCV 2008 , pp. 650-663, 2008.

6
Sun J, Wu X, Yan S, et al. “Hierarchical spatio-temporal context modeling for action recognition”,

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 2009:2004-2011.
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Datasets

KTH

• 2391 sequences, 25 people, 4 scenarios, 3-4 repeats, low
resolution

• 6 actions: walking, running, jogging, boxing, hand waving,
hand clapping

Human Action Recognition via Keypoint Tracking, Yunus Emre Kara 8/43







Introduction The Generic Keypoint Tracker Feature Extraction Results Conclusions

Datasets

URADL

• 150 sequences, 5 people, 3 repeats, high resolution

• 10 actions: Answering a phone, Chopping a banana, Dialing a
phone, Drinking water, Eating banana, Eating snack chips,
Looking up a phone number in a phone book, Peeling a
banana, Using silverware, Write a phone number on a white
board
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Datasets

WeCare

• 720 sequences, 6 people, 10 repeats, moderate resolution

• 8 actions: Walking, Jumping, Sitting on the armchair,
Standing up from the armchair, Lying on the gym mat,
Standing up from the gym mat, Falling onto the armchair,
Falling onto the gym mat
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Our Approach

Outline

• A local approach

• Tracks keypoints

• Uses their trajectories

Keypoint 
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Our Approach

What is a keypoint?

• Keypoint: Important points; such as corners, blobs, t-junctions

• Usage: object detection, image registration, camera
calibration, image mosaicing, ...

• Methods: Harris, FAST, SIFT, SURF, ...

• Keypoint descriptor: Gives information about the
neighborhood of a keypoint
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Our Approach

Why do we use trajectories?

• Keypoints are robust for tracking objects

• Localization and background subtraction are not required
• Trajectories of tracked keypoints give information about the

motion
• The motion information is invariant to the appearance
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Our Approach

Some advantages of our approach

• Invariant to some viewpoint changes

• Invariant to partial occlusions

• Robust to the temporal length variations.

• Invariant to the location of the action.
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Outline of the Generic Keypoint Tracker
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Keypoint detection

• Finding point correspondences between two images:
• Keypoint detection
• Descriptor extraction
• Keypoint matching

• Our algorithm allows the use of external keypoint detector and
descriptor extraction modules

• Built-in “Keypoint Matching” module

• We use SURF method7 both for keypoint detection and
descriptor extraction steps.

• SURF keypoint descriptor: 64 dimensional vector extracted
from the keypoint’s local patch

7
Bay, H., A. Ess, T. Tuytelaars and L. V. Gool, “Speeded-Up Robust Features (SURF)”, Computer Vision and

Image Understanding, Vol. 110, No. 3, pp. 346-359, 2008.
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Keypoint-Trajectory Matching

• Gaps in time are allowed ⇒ robust to occlusions

• Missing keypoints are interpolated linearly

• Trajectory descriptor: Calculated using the descriptors of
member keypoints

• We compare the descriptors of keypoints with the descriptors
of trajectories

• The descriptor distance of the best match is divided by the
descriptor distance of the second best match.
Small ratio ⇒ Mark for matching

• For matching, we must mark in both ways. The matched
trajectory of a keypoint must also be matched with that
keypoint.
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Keypoint-Trajectory Matching

• Current trajectories (blue curves)

• Newly detected keypoints (red points)
• Spatial neighborhood of a trajectory
• Best matching keypoint (green point)
• Spatial neighborhood of the best matching keypoint
• Best matching trajectory (green curve)
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Trajectory Updating

• Matching is done for each trajectory (green curves)

• Some trajectories may not be matched with a keypoint

• Unmatched keypoints initiate new trajectories (green points)
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Elimination and Storing

Stationary points

The stationary points are found by looking at the diagonal length
of the trajectory’s bound box.

 

Bounding box 
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Elimination and Storing

• We eliminate trajectories
• for narrowing down the

search space

• and removing noise

• We store trajectories if
• they are ready for

feature extraction

• and not modified for
some time

• We do these operations
after each frame  
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Feature extraction outline
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Normalizing Against Time
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Normalized Against Time
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Normalizing Against Spatial Position
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Normalizing Against Spatial Position
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Trajectory Feature Extraction

• Start time: t1

• End time: tn

• Mean x coordinate
of keypoints (xm)

• Mean y coordinate
of keypoints (ym)

• Length of the path
until halftime
(red path)

• Length of the path
since halftime
(blue path)
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Trajectory Feature Extraction

• x and y
components of the
vector passing
through the first
and the last
keypoints
(LN,x and LN,y )

• Maximum |Ei |, with
sign

•
Li · LN
||LN ||2

The vector passing through the
first and i th keypoints: Li = (xi−x1, yi−y1)
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Extracting Sub-trajectories

• Trajectories differ in length

• We divide them into smaller subparts

• These subparts are used in describing videos

 
Video Sequence 

t 

 Sub-trajectories 

Trajectories 

 Sub-trajectories 

Human Action Recognition via Keypoint Tracking, Yunus Emre Kara 29/43



Introduction The Generic Keypoint Tracker Feature Extraction Results Conclusions

Bag-of-trajectories

• Trajectory features are normalized (t-statistic or min-max)
• Normalized features are clustered using k-means
• Image sequence descriptor: Normalized histogram of the

clusters of trajectories
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Parameters

Parameters

σ the minimum required sample count
ν the maximum allowed time since last observation
ρ the minimum age to be eliminated
ω the maximum number of keypoints for a sub-trajectory
n normalization method before bag-of-trajectories
K cluster count for K-means of bag-of-trajectories
C SVM cost parameter
k k-NN k value depending on the method
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Experiment Setup

Experiment Setup

• A total of 23994 experiments
• 4300 experiments on the KTH dataset
• 15394 experiments on the URADL dataset
• 4300 experiments on the WeCare dataset

• 10-fold cross validation on KTH and WeCare datasets

• 5-fold cross validation on the URADL datasets

• SVM with χ2 kernel is tried with 11 different cost parameter
values

• k-NN is tried with all k’s in the range 1-32
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Validation Results

Validation Results (1)
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Validation Results

Validation Results (2)
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Validation Results

Validation Results (3)
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Test Results

KTH dataset

• Accuracy: 87.25%

• Classes: C1: walking, C2: jogging, C3: running, C4: boxing, C5: hand clapping,
C6: hand waving

Actual Class
C1 C2 C3 C4 C5 C6

P
re

d
ic

ti
o

n

C1 130 8 0 0 0 0
C2 14 126 26 0 0 0
C3 0 10 118 0 0 0
C4 0 0 0 139 15 5
C5 0 0 0 4 129 28
C6 0 0 0 0 0 111
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Test Results

URADL dataset

• Accuracy: 88%

• Classes: C1: answer phone, C2: chop banana, C3: dial phone, C4: drink water,
C5: eat banana, C6: eat snack, C7: lookup in phonebook, C8: peel banana, C9:
use silverware, C10: write on whiteboard

Actual Class
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

P
re

d
ic

ti
o

n

C1 15 0 1 0 0 0 0 0 0 0
C2 0 14 0 0 0 0 0 0 0 0
C3 0 1 14 0 2 0 0 1 0 0
C4 0 0 0 14 0 0 0 1 0 0
C5 0 0 0 0 12 0 0 2 0 0
C6 0 0 0 0 0 12 0 2 0 0
C7 0 0 0 0 0 2 14 0 1 0
C8 0 0 0 1 1 1 0 8 0 0
C9 0 0 0 0 0 0 1 1 14 0
C10 0 0 0 0 0 0 0 0 0 15
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Test Results

WeCare dataset

• Accuracy: 98.75%

• Classes: C1: walking, C2: jumping, C3: sitting on the armchair, C4: standing up
from the armchair, C5: lying on the gym mat, C6: standing up from the gym
mat, C7: falling onto the armchair, C8: falling onto the gym mat

Actual Class
C1 C2 C3 C4 C5 C6 C7 C8

P
re

d
ic

ti
o

n

C1 80 0 0 0 1 0 0 0
C2 0 20 0 0 0 0 0 0
C3 0 0 20 0 0 0 1 0
C4 0 0 0 40 0 0 0 0
C5 0 0 0 0 18 0 0 0
C6 0 0 0 0 0 20 0 0
C7 0 0 0 0 0 0 19 0
C8 0 0 0 0 1 0 0 20
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Conclusions (1)

• A novel method for tracking keypoints is proposed.
• A feature set for describing trajectories is proposed.
• Performance is comparable to the methods in the literature.
• The KTH dataset

• Our approach: 87.25%
• Schuldt et al.8: 71.72%
• Niebles et al.9: 81.5%
• Laptev et al.10: 91.8%
• Messing et al.11: 74%

8
Schuldt, C., I. Laptev and B. Caputo, “Recognizing Human Actions: A Local SVM Approach”, Proceedings

of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., Vol. 3, pp. 32-36 Vol.3, IEEE,
2004.

9
Niebles, J. C., H. Wang and L. Fei-Fei, “Unsupervised Learning of Human Action Categories Using

Spatial-Temporal Words”, International Journal of Computer Vision, Vol. 79, No. 3, pp. 299-318, Mar. 2008.
10

Laptev, I., M. Marszalek, C. Schmid and B. Rozenfeld, “Learning realistic human actions from movies”,
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1-8, IEEE, 2008.

11
Messing, R., C. Pal and H. Kautz, “Activity recognition using the velocity histories of tracked keypoints”,

IEEE 12th International Conference on Computer Vision, pp. 104-111, Sep. 2009.
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Conclusions (2)

• The URADL dataset
• Our approach: 88%
• Messing et al. (Velocity Histories): 63%
• Messing et al. (Latent Velocity Histories): 67%
• Messing et al. (Augmented Velocity Histories): 89%
• However, augmented velocity histories method of Messing et

al. is highly dependent on the position of the action on the
frame and it requires the position of the face.

• A new dataset is introduced: WeCare

• Our performance of the WeCare dataset is 98.75%

• More challenging scenarios should be added to the WeCare
dataset for testing our work.
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Future directions

• More robust elimination module

• New trajectory features

• Improved recognition performance

• Human action detection system

• Trajectories in 3D space

• Real time recognition support
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THANK YOU
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