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Abstract

The emergence of inexpensive 2.5D depth cameras has enabled the extraction

of the articulated human body pose. However, human hand skeleton extrac-

tion still stays as a challenging problem since the hand contains as many

joints as the human body model. The small size of the hand also makes

the problem more challenging due to resolution limits of the depth cameras.

Moreover, hand poses suffer from self-occlusion which is considerably less

likely in a body pose. This paper describes a scheme for extracting the hand

skeleton using random regression forests in real-time that is robust to self-

occlusion and low resolution of the depth camera. In addition to that, the

proposed algorithm can estimate the joint positions even if all of the pixels

related to a joint are out of the camera frame. The performance of the new

method is compared to the random classification forests based method in

the literature. Moreover, the performance of the joint estimation is further

improved using a novel hierarchical mode selection algorithm that makes use
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of constraints imposed by the skeleton geometry. The performance of the

proposed algorithm is also tested on a complex dataset where self-occlusion

is frequently encountered. The new algorithm which runs in real time using

a single depth image is shown to outperform previous methods.
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1. Introduction1

Interaction of humans and computers has always been an important area2

of research. Enhancing the communication between humans and computers3

increases work efficiency and improves the quality of the work being pro-4

duced. For that reason, new mice and keyboards are still being designed.5

In spite of the new designs, the use of classical input devices has become a6

limiting factor when compared to the capabilities of today’s computers. As7

a result, natural interfaces which make use of speech, touch, and gestures8

are sought. As a natural interface, speech recognition is widely used and has9

proved its success in recognizing a multitude of languages. After the release of10

multi-touch enabled devices, touch interfaces have become also mainstream.11

However, the real breakthrough will be through the use of the human hand12

as an input device.13

Gesture based communication is very intuitive for humans. A simple way14

to employ gesture recognition is tracking the position of hands and detecting15

a gesture. Detecting and tracking the centers of naked hands are relatively16

simpler when compared to detecting the exact configuration of the articulated17

pose. Unfortunately, most of the hand gestures require the exact detection18
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of the hand pose and tracking the pose variations in a robust fashion. Even19

in the presence of powerful CPUs, articulated hand pose extraction is a very20

difficult problem. Moreover, the hand is a small limb that produces self-21

occluded poses during gesture performance.22

With the introduction of inexpensive depth cameras, the human computer23

interaction field has been revolutionized; and it is now feasible to establish24

methods employing computer vision based interaction. Bypassing the illumi-25

nation based problems encountered on the images captured by conventional26

cameras, the new depth cameras made it possible to establish very fast and27

less power hungry methods. Unfortunately, inexpensive depth cameras that28

are widely used still work on low resolution.29

As discussed before, most of the gestures produce depth images where a30

large proportion of the hand parts are unseen. The challenge is to extract31

the articulated hand pose from self-occluded, noisy, and low resolution hand32

depth images, with algorithms that are suitable for real time implementation33

on current CPUs/GPUs.34

There are several surveys on hand pose estimation and gesture recogni-35

tion (Erol et al., 2007; Suarez and Murphy, 2012). Erol et al. (2007) review36

hand pose estimation methods. They investigate both partial and full pose37

estimation methods. They categorize the full pose estimation methods into38

single frame and model-based tracking methods. Most of the works in the39

literature focus on grayscale or color based methods. These works use ei-40

ther single or multiple cameras. Athitsos and Sclaroff (2003) create a large41

synthetic hand pose database using an articulated model and estimate 3D42

hand pose from a single frame cluttered image by finding the closest match.43
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de Campos and Murray (2006) recover hand pose from a single frame us-44

ing an RVM-based learning method. In order to overcome the self-occlusion45

problem, multiple views are combined. Oikonomidis et al. (2011) use Particle46

Swarm Optimization for solving the 3D hand pose recovery problem. de La47

Gorce et al. (2011) work on monocular videos for 3D hand pose estimation.48

They track hand poses using a generative model-based method. Thippur49

et al. (2013) use visual shape descriptors for describing the hand shape.50

Recent advances have been made on the depth camera front. Usually,51

time-of-flight depth cameras are used to acquire depth (range) images (Malas-52

siotis and Strintzis, 2008; Doliotis and Athitsos, 2012; Gallo and Placitelli,53

2012; Billiet et al., 2013). Some works make use of disparities to get depth54

information, and some works use color and depth data together for estimat-55

ing hand poses (Yao and Fu, 2012; Liang et al., 2012). Liu and Fujimura56

(2004) use time-of-flight cameras to acquire depth images for hand gesture57

recognition. Their hand detection method is based on measuring the shape58

similarity by thresholding the depth data and using Chamfer distance. They59

recognize gestures using shape, location, trajectory, orientation and speed60

features of the hand. Mo and Neumann (2006) work on low-resolution depth61

images acquired from a laser-based camera. Their algorithm requires man-62

ual initialization and uses basic sets of finger poses for interpolating a hand63

pose. Malassiotis and Strintzis (2008) use depth images generated from syn-64

thetic 3D hand models. Suryanarayan et al. (2010) use depth for dynamically65

recognizing scale and rotation invariant poses. Using a volumetric shape de-66

scriptor formed by augmenting a 2D image, they classify six signature hand67

poses. Lee et al. (2012) model hand shape variations using manifolds. Shot-68
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ton et al. (2011, 2013) use classification forests for human pose estimation69

using depth data. Keskin et al. (2011) adapted this method to hand pose70

estimation.71

Recent advances have shown that using random classification or regression72

forests on depth images is a suitable choice for hand pose skeleton extraction,73

since the recognition phase is very fast and requires minimal algorithmic74

complexity.75

In this work, we investigate the use of random decision forests for the76

hand pose estimation problem. We adapt the regression forests method to77

the hand pose estimation task. This method was initially proposed for the78

human pose estimation area by Girshick et al. (2011). We compare the79

results of the newly proposed method to the results of Keskin et al. (2011).80

In addition, we introduce a hierarchical mode selection method that makes81

use of constraints imposed by the hand skeleton geometry. Regression forests82

of Girshick et al. (2011) extract multi-modal joint position distributions per83

joint. They only consider the global mode. However, disregarded local modes84

of the joint distribution provide invaluable information in the case of self-85

occlusions and missing data. Knowing all joint configurations are sampled86

from the same skeletal constraints, provides a strong prior knowledge about87

the hierarchy of the modes over different joints. We investigate possible88

skeleton configurations that fit not only on the global modes but also on the89

local modes. The probable configurations are then filtered out using distance90

constraints based on a priori positions from the hand skeleton model. At the91

end, the best skeletal configuration is selected to be the hand pose using92

dynamic programming.93

5



In Section 2, we give the details of random decision forests for classifica-94

tion and regression along with the features we used within these methods.95

Moreover, we introduce our novel hierarchical mode selection method which96

provides a significant improvement to the joint estimation step. Section 397

includes the details of our synthetic data generation method and the datasets98

along with our cross validated parameter selection and the results on the test99

sets. We conclude with the discussion of the results in Section 4.100

2. Methodology101

This section gives the details of the hand pose estimation methods. The102

outline of the methods discussed are shown in Figure 1. Section 2.1 includes103

description of the random decision forests approach. Sections 2.2 and 2.3104

explain the use of random decision forests for hand pose estimation based on105

classification (RDF-C) and regression (RDF-R), respectively. In Section 2.4,106

we introduce a new hierarchical mode selection algorithm which we call RDF-107

R+.108

2.1. Randomized Decision Trees109

A decision tree is used for inferring a set of posterior probabilities for the110

input. It consists of internal nodes and leaf nodes; where the internal nodes111

propagate the data to one of its children. In the binary case, decisions to112

split the data are simply yes/no decisions. Leaf nodes do not make a decision113

but give statistical information about the nature of the data. The type of114

statistical information depends on the application.115

In randomized decision trees, the decisions on internal nodes are made116

by selecting a random subset of the features. The aim is to reach leaf nodes117

6



Figure 1: Overview of the methods. The only difference of RDF-C and RDF-R training

phases is at the leaves of the trees. RDF-C stores histograms whereas RDF-R stores

relative votes. RDF-C classifies each pixel and estimates the joint positions using the

estimated pixel labels. However, RDF-R estimates joint positions directly by using the

relative votes stored at the leaves.
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that are as pure as possible. A pure node consists of samples of only one118

class. Thus, the features are selected to yield maximum information gain, in119

other words, minimum entropy. The decision rule is usually of the form:120

fn(v) < τn (1)

where fn(v) is a split function, v is the feature vector and τn is a threshold,121

at split node n. A split function is a real valued function on a subset of122

features.123

During training, the split functions and thresholds of nodes are chosen to124

satisfy the minimum entropy condition. On the leaf nodes, statistics are col-125

lected using the data associated with that node. In the case of classification,126

this is usually a histogram of the class labels of the leaf node data.127

Decision Forests are ensembles of decision trees. Each tree can be trained128

on the same or slightly different datasets. During testing, the given sample129

is processed in each tree separately. The statistics on the reached leaves are130

combined for a common response. In classification problems, this is usually131

done by accumulating normalized histograms on the leaves.132

2.2. Hand Pose Estimation using Randomized Decision Forest for Classifi-133

cation (RDF-C)134

Shotton et al. (2011) used RDF-C for human body pose estimation. Ke-135

skin et al. (2011) adapted that method to the hand pose estimation problem.136

The aim of the method is to find the pixels closest to each joint. Centroids137

of those pixels would give the joint position. However, since some classifica-138

tion errors are anticipated, it would be better to find the mode of the pixel139
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positions instead of the mean. For this purpose, first the training data pixels140

are labeled to define the area around the joints. A decision forest is trained141

using this data. On the leaves, histograms are calculated using the classes of142

the pixels.143

2.2.1. Pixel Classification using RDF-C144

At each node of a randomized decision tree, a random subset of features145

must be selected and a decision must be made using this subset. Keskin et al.146

(2011) used the same feature family for hand pose estimation as Shotton et al.147

(2011). The training data consists of large number of pixels of different depth148

images. Given a depth image I, features are computed as149

Fu,v(I,x) = I

(
x +

u

I(x)

)
− I

(
x +

v

I(x)

)
(2)

where u and v are offsets relative to the pixel position x, and they are150

normalized by the depth at x, I(x).151

The node data consisting of (I,x) pairs are split into two sets for each152

child as153

CL(u,v, τ) = {(I,x)|Fu,v(I,x) < τ} (3)

CR(u,v, τ) = {(I,x)|Fu,v(I,x) >= τ}. (4)

Since it is desired to split the data into purer children nodes, the tu-154

ple ((u,v, τ)) that gives the maximum information gain is chosen among155

randomly created tuples. Maximum information gain is found using entropy.156

First, a candidate split is found and the total decrease in entropy that results157

from this split is calculated. The split score is158
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S(u,v, τ) = H(C)−
∑

s∈{L,R}

|Cs(u,v, τ)|
|C|

H(Cs(u,v, τ)) (5)

where H(K) is the Shannon entropy estimated using the normalized his-159

togram of the labels in the sample set K. Then, the candidate tuple that160

yields the maximum score is chosen for the particular node.161

In classification, a pixel (I,x) is pushed down the tree until a leaf node162

is reached. At each leaf node, a histogram represents the posterior probabil-163

ities P (ci|I,x) for each class ci learned during the training phase. The final164

decision is made by averaging the posterior probabilities estimated by the165

trees of the forest:166

P (ci|I,x) =
1

N

N∑
n=1

Pn(ci|I,x) (6)

where N is the number of trees in the forest.167

2.2.2. Joint Position Estimation using the Classified Pixels168

For a given depth image, the RDF-C algorithm yields posterior probabil-169

ities of each pixel for each class after classification. The resulting probability170

surfaces are generally multi-modal. Thus, simple averaging is not a suitable171

operation. For overcoming the high impact of misclassified pixels on the cen-172

troid of the pixel locations of the same class, a method that is more robust to173

false positives than averaging, must be used. In this situation, mode finding174

is preferred instead of averaging. A local mode finding approach, such as175

mean shift, can be used.176

First, a Gaussian kernel centered on a random point on the probability177

image is placed. Then, a weighted mean of the probability image under this178
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Gaussian kernel is calculated. Weight indicates the importance of the pixel179

and is an estimate of the area the pixel covers. Weights are calculated as180

wI,x,ci = P (ci|I,x)I(x)2. (7)

The newly calculated mean point is used as the starting point of the next181

iteration. This is repeated until converging to a local maximum. For finding182

the global maximum, the algorithm runs several times, each time starting at183

a different initial point and the highest peak is selected.184

2.3. Hand Pose Estimation using Randomized Decision Forest for Regression185

(RDF-R)186

Girshick et al. (2011) proposed a new method for the human body pose187

estimation problem. This technique directly infers the joint coordinates using188

random decision trees without an intermediate pixel classification represen-189

tation, hence making it more robust against occlusion. This algorithm is190

suitable for application to human hand pose estimation. We adapt Random-191

ized Decision Forest for Regression (RDF-R) for directly inferring hand joint192

positions from the depth image without the intermediary per pixel classifi-193

cation phase. RDF-R can learn and estimate the joint positions even under194

self-occlusions. Unlike RDF-Cs, RDF-Rs depend on the mean shift algorithm195

in the training phase, as well.196

2.3.1. Training of the Joint Positions197

The structure of the trees, namely the features selected in the tree nodes,198

is the same as described in Section 2.2.1. Therefore, the structure is learned199
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in such a way that leaves are favored to store pixels belonging to the same200

part of the hand shape.201

RDF-Rs do not store hand part histograms at each leaf node l but a202

distribution over the relative 3D offsets, called a vote, to each hand joint j.203

These votes are the positions of joints relative to the pixel in question. Each204

training pixel q is propagated through the tree branches until it reaches a205

leaf node l. The pixel then casts a relative vote for each distinct joint j. The206

relative vote can be evaluated using as:207

∆iq→j = zij − xiq, (8)

where zij is the ground truth joint position, and xiq is the 3D pixel position208

for a pixel q belonging to image i. For a leaf node l, a relative vote to joint209

j evaluated for pixel q belonging to image i is then stored in set Rlj. An210

example multi-modal vote distribution is illustrated in Figure 2.211

We prefer to use large training sets since we want to infer joint positions of212

different hand pose configurations. All the information represented by a vote213

distribution of a leaf cannot be stored in memory. A consensus of relative214

votes has to be reached per tree leaf for information compression. Unfortu-215

nately the vote distributions are not unimodal. Representing the votes by216

fitting a Gaussian is therefore not suitable. The different clusters of votes217

have to be distinguished as a preliminary phase. Mean shift algorithm is a218

proper candidate for the task. After selecting a suitable kernel, the mean219

shift algorithm finds the number of different clusters and their means. The220

percentage of relative votes belonging to a cluster is the weight of that clus-221

ter. Unfortunately the training phase requires handling of great numbers of222
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votes per tree leaf. In order to learn the relative votes in a reasonable time,223

the vote distribution Rlj is sub-sampled using reservoir sampling of Vitter224

(1985). Reservoir sampling is a single-pass O(N) algorithm that facilitates225

speeding up the long training phase. Sub-sampling, once a reasonable sample226

size is chosen, does not affect the modes of the vote distributions, thus pro-227

viding a considerable performance increase during the training phase without228

compromising quality.229

Consequently, we initialize a set Rlj = ∅ for all leaf nodes l and joints230

j. A depth image pixel q is propagated to its respective tree leaf and casts231

a vote which is stored in Rlj. All the reservoir sampled pixels of a leaf l232

cumulatively represent vote distributions for all different joints j. For all leaf233

nodes l and joints j we cluster the reservoir sampled distributions Rlj using234

mean shift and take top K weighted modes as Vlj.235

Figure 2: Sample multi-modal vote distributions for three different joints. Vote distribu-

tions may have multiple modes. Different colors indicate pixel clusters that are assigned

to the same mode found by mean shift.

2.3.2. Direct Joint Position Estimation using RDF-R236

We start by initializing Zj = ∅ for all joints j. All the pixels in a test237

depth image are propagated to the tree leaves by starting at the root node238

13



and assigning the pixel either to the left or to the right child recursively until239

a leaf node l is reached. 3D pixel position of the depth image pixel is recalled240

from the depth image using xq = (xq, yq, zq)
T. Each test-time depth pixel241

casts its per joint vote as represented by the stored weighted relative vote242

set Vlj. Absolute vote coordinate is evaluated using z = ∆ljk + xq. The vote243

is not cast if ‖∆ljk‖2 ≥ λj, where λj is a distance threshold learned for each244

different hand joint. To aggregate the absolute votes Zj, for each joint j we245

define a continuous distribution over world space using a Gaussian Parzen246

density estimator such as247

Pj(z
′) =

∑
(z,w)∈Zj

w. exp

(
−
∥∥∥∥z′ − zbj

∥∥∥∥2
2

)
, (9)

where bj is a learned per-joint bandwidth. Running mean shift using Equa-248

tion 9 produces the weighted modes as final hypotheses.249

2.4. Hierarchical Mode Selection using Geometry Constraints (RDF-R+)250

RDF-R method outputs posterior distributions of possible joint locations.251

Even though using the global modes of the multi-modal distributions seems252

to be the most straightforward approach, the correct position of the joint253

often corresponds to a local mode. However, considering local modes for the254

joint positions results in multiple skeletal configuration candidates, instead of255

a single one given by the global modes. For selecting a suitable configuration,256

we introduce a hierarchical mode selection method and define a constraint257

function based on our prior knowledge about the hierarchical structure of the258

3D model. We penalize each candidate skeletal configuration according to259

our constraints and select the one with the smallest penalty to be the hand260
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pose.261

The hierarchy of a skeleton can be defined as262

H = {(c, p) : p is the parent of c} (10)

where c and p are joints.263

Let j be a joint and P (·|j) be the posterior distribution of j’s position.264

Assuming that the distribution has Nj modes, we define a mode of this265

distribution as x
kj
j where kj ∈ {1, . . . , Nj} and P (x

kj
j |j) ≥ P (x

kj+1
j |j). With266

this condition modes are ordered decreasingly according to their probabilities.267

For finding the skeletal configuration, we want to select a mode for each268

P (·|j). This selection is performed by dynamic programming so that the total269

penalty of the hierarchical model is minimized for a given penalty function270

f ,271

(k′1, . . . , k
′
J) = argmin

k1,...,kJ

∑
(c,p)∈H

f
(
xkc
c ,x

kp
p

)
(11)

where J is the total number of joints and k1, . . . , kJ are the mode indices272

of the related joints. Then, the most suitable skeletal configuration can be273

represented as274

S ′ = (x
k′1
1 , . . . ,x

k′J
J ). (12)

By defining a penalty function, different hierarchical constraints can be275

imposed. Let us define two different penalty functions276
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f1
(
xic
c ,x

ip
p

)
=

0, ic = 1 and ip = 1

1, otherwise

(13)

f2
(
xic
c ,x

ip
p

)
=
(
||xic

c − xip
p || − bcp

)2
(14)

where bcp is the expected length of the bone between the joints c and p.277

Since xk
j s are ordered according to their probability, the global mode of278

the posterior distribution is x1
j . Thus, f1 behaves as the global mode finding279

approach used by Girshick et al. (2011). f2 tries to select the modes such280

that the distance between them is as close as possible to the expected bone281

length.282

An example of the improvement made by RDF-R+ method is shown in283

Figure 3 which shows the vote distribution for tip of the index finger. As284

clearly seen, there are two different local modes in the distribution. The285

global mode is not the correct one to be selected. RDF-R wrongly selects286

the global mode whereas RDF-R+ considers the hierarchical dependencies287

of the joints and finds the appropriate local mode successfully.288

3. Experiments289

In Section 3.1, we give the details of the hand data generation step and290

introduce the datasets that we use. Section 3.2 discusses the fine-tuning of291

the essential training parameters, namely the forest size, the tree depth, the292

probe distance, the depth threshold, and the mean shift bandwidth. In Sec-293

tion 3.3, the fine-tuned RDFs are tested on four different datasets. We first294

test on the training dataset to gather information about the characteristics295
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Figure 3: Improvement of RDF-R+ method over RDF-R is shown for tip of the index

finger: left) incorrect fingertip estimation of RDF-R, middle) accumulated votes for index

fingertip, right) correct fingertip estimation of RDF-R+.

of the methods, and then extend our tests to two different synthetic and one296

real test datasets.297

3.1. Data Generation and Datasets298

Training the decision trees for classification and regression requires a great299

amount of training data. Capturing such a big dataset and labeling different300

parts of the depth images is a problem on its own. In order to cope with301

this problem, a synthetic 3D hand mesh is modeled and a realistic skeleton302

is rigged. The produced skeletal object is animated. In this approach, the303

difficult pixel labeling problem reduces to creating a label texture that is304

mapped to the hand mesh. We generate the label texture such that each305

skeleton joint is at the center of one of the labeled parts. The variation306

of the human hand across different individuals is significantly less than the307

body. An average sized hand is selected whose length from the bottom of308

the palm to the tip of the middle finger is 20 cm. Each different joint of the309

hand is restricted in a manner to mimic the constraints of the human hand.310

The synthesizer program designed for this study allows for different poses to311
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be stored in keyframes along a timeline. Once an animation is designed, we312

animate it using linear interpolation between different keyframes.313

In this study, we use 40 different hand poses. Poses are mainly selected314

from the American Sign Language alphabet. 26 poses represent the letters315

from A to Z, and 10 poses are for the numbers between 1 and 10. We also316

include four widely used hand poses, namely the closed-hand, open-hand,317

approval gesture, and all finger tips touching pose. For each pose, the model318

is rotated up to 32, 64, and 64 degrees along the x, y, and z axes, respectively.319

Various samples are collected for different angles with steps of six degrees.320

Center of the palm is always aligned with the center of the images created.321

We also add Gaussian depth noise to the depth image pixels with a mean322

of 10 mm, and a standard deviation of 5 for improving the generalization323

of the trained classifiers. During hand pose configuration setup, Gaussian324

noise is introduced to the angles of the skeleton for the unconstrained degree325

of freedoms with a mean of 2 degrees and a standard deviation of 1 degree.326

The resulting training (TRAIN) dataset consists of 29766 image samples.327

Rendered depth and label images are 160x160 pixels in resolution. In Figure328

4, we show sample frames from the TRAIN dataset.329

Training and validation are done on the TRAIN dataset using 10–fold330

cross validation. For testing the performance of different methods, we created331

two different datasets. The first one is the cropped (CROP) dataset. It is332

generated by retaining the center 80x80 pixels and erasing the outer pixels of333

each image from the TRAIN dataset. On the average, 81.09% of the pixels334

from each image are kept with a standard deviation of 8.91. The CROP335

dataset is used for testing the performance of different methods under missing336
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Figure 4: Sample frames from the TRAIN dataset
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data conditions.337

The second test dataset is the Rock–Paper–Scissors–Lizard–Spock (RP-338

SLS) dataset. The Rock–Paper–Scissors–Lizard–Spock game is invented by339

Kass (1995). The RPSLS dataset is a completely new dataset synthesized340

from 5 different well-known poses not contained in the training set. All341

possible transitions between pose pairs are considered and animated using342

3 frames per transition. The same rotation conditions are also applied to343

the pose animations, resulting in a dataset of 30492 images with 160x160344

resolution. The poses of the RPSLS dataset are not used during the training345

of the decision trees. This dataset is used to benchmark the generalization346

performance of different methods.347

Additionally, we tested the methods on a subset of ASL Finger Spelling348

Dataset of Pugeault and Bowden (2011) for reporting the performance on349

real data. The dataset contains sample frames of 5 annotators for 24 finger350

spelling signs. Since 3D annotation on depth data is a tedious task, we only351

annotated a 55 frame subset of the dataset. The annotated subset consists352

of one sample for a, d, e, f, i, l, s, u, v, w, and y signs of each annotator.353

3.2. Parameter Selection354

We do 10–fold cross validation for fine-tuning the essential training pa-355

rameters. We investigate the effects of the forest size, the tree depth, the356

probe distance, the depth threshold, and the mean shift bandwidth parame-357

ters.358
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Figure 5: Effects of training parameters

3.2.1. The Effect of the Forest Size359

An advantage of random forests is that the inference performance can360

be enhanced by combining multiple random trees. Both the generalization361

capability and the accuracy of the inference improves as the number of trees362

used is increased. There is a trade-off between inference time and the infer-363

ence accuracy. Figure 5a shows the effect of number of trees on the accuracy364

of the system. Accuracy, recognition time, and memory usage are jointly365

optimized when the number of trees is selected to be 5.366

3.2.2. The Effect of the Tree Depth367

The depth of the trees is also an essential parameter. The representa-368

tion capability increases as the depth of the trees increase. Unfortunately,369
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increasing the depth of the trees also increases the inference time. Selecting370

an optimal depth is important for balancing the inference accuracy and the371

recognition time. In addition to that, the memory requirement also increases372

exponentially. If the training data complexity and size are not adequate for373

the utilization of the desired tree depth, numerous empty sub-branches in374

the forest structure appear. This under-utilization causes ineffective use of375

the allocated memory. For instance, selecting a tree depth of 20 consumes376

approximately 256 MB of memory per tree.377

The validation performance of both RDF-C and RDF-R stabilizes after378

a tree depth of 20 levels. They both slowly converge to their maximum379

accuracy as we increase the tree depth. However, it is not feasible to further380

increase the tree depth as the memory required increases exponentially. We381

selected a tree depth of 21 for our tests as it is a good trade-off between the382

accuracy, recognition time, and memory requirement.383

Another interesting behavior is that RDF-Cs perform better than RDF-384

Rs when tree depth is less than 13 as shown in Figure 5b. This behavior is385

due to the fact that RDF-Cs store class label histograms whereas RDF-Rs386

store 3D relative votes. For a high quality histogram, leaves should have387

numerous pixels, which is the case in a shallow tree. On the other hand,388

RDF-Rs work better with just enough data.389

3.2.3. The Effect of the Probe Distance390

Probe distance is an important parameter which defines the learning391

amount from spatial relations. As we increase the probe distance, even more392

distant depth pixel couples are utilized for inference. With a small probe393

distance value, a more localized recognizer is trained which cannot infer suc-394
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cessfully using correlation of distant parts or joints of the model. On the395

other hand, selecting a bigger than needed maximum probe distance value396

increases the training time. Both the RDF-C and RDF-R methods converge397

to their optimal performances when probe distance is selected to be 60 for398

our dataset as seen in Figure 5c.399

3.2.4. The Effect of the Depth Threshold400

Depth threshold is similar to the probe distance. It controls the amount401

of learning based on depth variations. A very small value forces the learning402

not to depend on depth differences which produces a silhouette learner. A403

big value may learn the noise along the depth axis. We selected 30 as the404

depth threshold.405

3.2.5. The Effect of the Mean Shift Bandwidth406

We used a shared bandwidth parameter for all joints. RDF-C algo-407

rithm produces less multi-modal and smoother distributions when compared408

to RDF-R. RDF-Rs form multi-modal distributions where the distribution409

peaks are clearly distinguished. Selecting an appropriate bandwidth has a410

greater influence on the performance of RDF-Rs. Performance of RDF-Cs411

do not change for reasonable values of bandwidth values whereas the perfor-412

mance of RDF-Rs are clearly dependent on the bandwidth parameter. We413

selected the bandwidth parameter to be 8.414

3.3. Hand Pose Estimation Test Results415

We start by testing all methods with the training dataset for demonstrat-416

ing the amount of learning each method can achieve. We use CMC curves417

that report successful joint localization versus an acceptance threshold. For418
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instance, the acceptance rate at 10 mm shows the percentage of joints that419

are closer than 10 mm to ground truth locations. RDF-C achieves a perfor-420

mance rate of 76.6% at 10 mm acceptable distance threshold. For RDF-R421

and RDF-R+, this performance increases to 98.0% and 98.1% respectively.422

These results clearly show that RDF-C under-performs due to self-occlusions423

of the hand poses. Both regression forest based methods are robust to self-424

occlusion, hence, can learn all of the joints with a high accuracy. Figure 6a425

shows the CMC curve for the TRAIN dataset.426

3.3.1. CROP Dataset427

The hand is a limb that inherently produces self-occlusions. Moreover,428

depth data may be partly missing due to various other reasons. Parts of429

the hand may be out of sight of the camera. Similarly hand may be very430

close to the camera. Depth cameras such as Kinect have zero planes. The431

pixels closer than the zero plane are clipped. Another common cause of miss-432

ing data is occlusion imposed by other objects in the environment. Depth433

cameras provide qualitative information where significant depth differences434

among neighboring regions occur. Given a depth image, segmentation algo-435

rithms are able to mark those regions occluded by other objects with a high436

accuracy. When those occluded regions are removed, the resulting depth437

image is an image where some of the valuable data is missing. The CROP438

dataset is specially designed for testing the inference performance of meth-439

ods in the case of large amount of occlusions. The RDF-C method is by440

design not robust against missing data. It produces a transient state of pixel441

classifications where the valuable information about occluded parts are lost.442

RDF-R is implemented to cope with this problem. It is robust to occlusion443
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(a) The TRAIN dataset
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(b) The CROP dataset
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(c) The RPSLS dataset
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(d) ASL Finger Spelling Dataset

Figure 6: CMC curves for all datasets
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by design. In addition, RDF-Rs provide multi-modal posterior distributions444

that are suitable for imposing structural constraints. The prior information445

provided by structural constraints of the hand is applied to create a new446

algorithm, namely RDF-R+.447

Figure 6b shows the CMC curve for the CROP dataset. The performance448

plots clearly demonstrate the strength of RDF-R over RDF-C. 50.4% of all449

joints recognized by the RDF-C method are in a neighborhood of 10 mm450

of ground-truth coordinates. RDF-R method enhances this performance to451

74.8%, which is a very significant improvement. Applying skeletal constraints452

still improves the results. RDF-R+ performs significantly better than RDF-453

R, increasing the performance to 81.3%.454

3.3.2. Rock-Paper-Scissors-Lizard-Spock (RPSLS) Dataset455

The RPSLS dataset is a difficult dataset to recognize by the trees trained456

with the TRAIN dataset. It is chosen to evaluate the sensitivity of the457

methods against extreme situations. The poses used during the creation458

of the dataset are either completely new poses or very similar but different459

poses. In either case the exact poses are not included in the training dataset.460

Training dataset includes a thumb-up pose which means alright in English461

body language. This pose is similar to the rock-pose of RPSLS dataset. The462

open-hand pose of training dataset is similar to the Spock-pose of RPSLS463

dataset. The open-hand pose is not regarded as similar to the paper pose464

due to their different alignments around z-axis. Training set rotates the465

poses around z-axis only 32 degrees which cannot cover 90 degree difference466

between open-hand and paper poses. None of the poses in RPSLS dataset is467

included in training. During this test, we check for the generalization limits468
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of different methods.469

Figure 6c shows the CMC curve for the RPSLS dataset. The performance470

plots demonstrate the similar relative performance improvements between471

RDF-C, RDF-R. RDF-R+, however, behaves similar to RDF-R. 60.2% of all472

joints recognized by the RDF-C method are in a neighborhood of 10 mm473

of ground-truth coordinates. RDF-R method increases the performance to474

67.5%. An interesting result is that the performance of RDF-C is better on475

RPSLS dataset compared to the CROP dataset with their respective values of476

60.2% and 50.4%. This is caused due to successful recognition rate on poses477

that are similar to the training poses and absence of cropping. Inferring in478

case of missing data is where RDF-C is weak. Applying skeletal constraints479

this time improves the results not so significantly, as its performance is 67.7%.480

When we examine the multi-modal posterior distributions of different joints,481

we see that the joint configurations are either detected with a high confidence482

or not detected at all with a high variance. Constraints cannot improve483

the performance significantly since similar poses are already detected well484

enough.485

3.3.3. ASL Finger Spelling Dataset (SURREY)486

Figure 6d shows the CMC curve for the ASL Finger Spelling Dataset. The487

performance of all algorithms are lower than those for the CROP and RPSLS488

datasets. This performance degradation is due to several factors: The first,489

is the significantly different characteristics of the training and test datasets:490

The test dataset contains many different unseen poses, and variations. The491

second is the presence of 5 different subjects, with different hand geometries.492

To see which of these factors weighs more in performance degradation, we493
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have looked at performance on different shapes and on different subjects.494

Instead of giving CMC curves, we provide performance figures at the 10 mm495

acceptance threshold in Table 1 and Table 2, for different shapes and different496

subjects, respectively.497

Table 1: Percentage of joints that are closer than 10 mm to the ground truth for each sign

on ASL Finger Spelling Dataset

ASL Letter RDF-C RDF-R RDF-R+

a 46.3 44.2 48.4

d 49.5 61.1 61.1

e 41.1 53.7 52.6

f 48.4 47.4 53.7

i 41.1 52.6 58.9

l 54.7 65.3 67.4

s 35.8 47.4 45.3

u 55.8 67.4 63.2

v 58.9 58.9 62.1

w 51.6 64.2 65.3

y 58.9 55.8 62.1

As observed from Table 1 and Table 2, the performance varies among498

different hand shapes and subjects. For example, the ASL letters a and s499

perform the worst: Upon inspection, it is seen that these ASL letters have500

been performed differently than they are rendered in the training database.501

If one excludes these shapes from the test set, performance increases by502

2.5%. Different subjects, on the other hand, affect performance; somewhat503
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Table 2: Percentage of joints that are closer than 10 mm to the ground truth for each

subject on ASL Finger Spelling Dataset

Subject RDF-C RDF-R RDF-R+

Subject 1 52.2 56.9 61.7

Subject 2 50.2 49.3 47.8

Subject 3 46.4 51.2 56.5

Subject 4 45.9 57.9 56.9

Subject 5 51.7 65.6 67.9

less. The hand size of the subject is an important factor. For instance,504

RDF-C performs better for subject 2. When subject 2’s live samples are505

examined, it is seen that she has a considerably bigger palm and shorter506

fingers than the synthetic model used in training. In some rare cases RDF-507

R+ algorithm decreases the performance of RDF-R. It is due to imposing508

bone length constraints which are not very compatible with the test data that509

is estimated. It is apparent that the system would further benefit from more510

rigorous training, with poses closer to those in the test set, with different511

hand shapes, and with different hand sizes.512

Overall live data performance of RDF-C, RDF-R, and RDF-R+ at 10513

mm acceptance threshold are 49.3%, 56.2%, and 58.2% respectively. Com-514

paring the different algorithms, we observe that RDF-R algorithms perform515

significantly better than RDF-C; and RDF-R+ has a 2% advantage over516

RDF-R.517

Figure 7 illustrates sample problematic cases for different methods. The518

average joint estimation performance rates of methods for all four datasets519
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are shown in Table 3.520

Figure 7: Joint estimation illustrations on test datasets

4. Conclusions521

We have demonstrated an implementation of regression forests for esti-522

mating the articulated 3D pose of the human hand. Previous attempts at523

articulated hand pose estimation used RDF-Cs. We have adapted RDF-524

Rs to this problem and implemented an improved hierarchically constrained525

version for further enhancing the robustness against heavy occlusion by im-526

plementing an algorithm that exploits the prior knowledge about the hierar-527

chy of human hand. Considering the hierarchical dependencies of the joints528

improved the joint position accuracy significantly. Skeletal constraints are529
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Table 3: Acceptance rates for the threshold of 10 mm. In all datasets, RDF-R+ method

outperforms the other methods.

Dataset RDF-C RDF-R RDF-R+

TRAIN 76.6 98.0 98.1

CROP 50.4 74.8 81.3

RPSLS 60.2 67.5 67.7

SURREY 48.7 55.8 57.6

exhaustively evaluated using dynamic programming in real-time. Tests with530

real data have shown us that although performance is lower with tests on531

real data, the results are consistent and performance is still acceptable. In532

order to improve performance, more rigorous training with i) more poses,533

ii) different hand geometries and, iii) real data is left as future work. The534

inference algorithms altogether run with an approximate speed of 200 FPS535

on a conventional notebook computer (Core i7 Quad 2.7 Ghz). Moreover536

the approach only uses a single depth image for inference. Temporal infor-537

mation can still be utilized for extra performance in future studies. Being538

able to detect the hand configuration without using a prior calibration step is539

important for commercial applications. Although this method works with a540

high accuracy, it can also be used as an initialization and/or observation step541

for a temporal domain tracker. For future studies, other skeletal constraints542

can be used and combined. Distances between all different joint pairs can be543

learned from the dataset for applying more restrictive hand configurations.544

Posterior distribution of joints can also be used as an observation step of a545

particle filter that fits a skeleton with a fast local search.546
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