
Real Time Hand Pose Estimation
using Depth Sensors

Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

Abstract Real time hand posture capture has been a difficult goal in computer vi-
sion. The extraction of hand skeleton parameters would be an important milestone
for sign language recognition, since it would make classification of hand shapes and
gestures possible. The recent introduction of the Kinect depth sensor has acceler-
ated research in human body pose capture. This chapter describes a realtime hand
pose estimation method employing an object recognition by parts approach, and the
use of this method for hand shape classification. First, a realistic 3D hand model
is used to to represent the hand with 21 different parts. Then, a random decision
forest (RDF) is trained on synthetic depth images generated by animating the hand
model, which is used to perform per pixel classification and to assign each pixel to
a hand part. The classification results are fed into a local mode finding algorithm to
estimate the joint locations for the hand skeleton. The system can process depth im-
ages retrieved from Kinect in real–time, and does not rely on temporal information.
As a simple application of the system, we also describe a support vector machine
(SVM) based recognition module for the ten digits of American Sign Language
(ASL) based on our method, which attains a recognition rate of 99.9% on live depth
images in real–time.

1 Introduction

After the release of multi–touch enabled smart phones and operating systems, there
has been a renewed interest in natural interfaces and particularly in hand gestures.
Hand gestures are used in these systems to interact with programs such as games,
browsers, e–mail readers and a diverse set of tools. Immersive 3D displays will also
depend heavily on the use of hand gestures for interaction.

Cem Keskin, e-mail: keskinc@cmpe.boun.edu.tr · Furkan Kıraç, · Yunus Emre Kara, ·
Lale Akarun, e-mail: {kiracmus,yunus.kara,akarun}@boun.edu.tr
Boğaziçi University, Computer Engineering Department, 34342, Istanbul, Turkey

1

keskinc@cmpe.boun.edu.tr
 {kiracmus, yunus.kara, akarun}@boun.edu.tr

2 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

Vision based hand gesture recognition, and particularly, sign language recogni-
tion has attracted the interest of researchers for more than 20 years. Yet, a framework
that robustly detects the naked hand and recognizes hand poses and gestures from
color images has continued to be elusive. This can be attributed mostly to the large
variance of the retrieved images, caused by changing light conditions, and to the
difficulty of distinguishing the hand from other body parts.

Two developments have recently accelerated implementations of human–computer
interaction using human body and hand gestures: The first is the release and
widespread acceptance of the Kinect depth sensor [1]. With its ability to gener-
ate depth images in very low illumination conditions, this sensor makes the human
body and hand detection and segmentation a simple task. The second development
is the use of fast discriminative approaches using simple depth features coupled with
GPU implementation; enabling real time human body pose extraction [2, 3].

Recently, Kinect has been used to achieve real–time body tracking capabilities,
which has triggered a new era of natural interface based applications. In their rev-
olutionary work, Shotton et al. fit a skeleton to the human body using their object
recognition based approach [2]. They use a large amount of labeled real and syn-
thetic images to train a randomized decision forest (RDF) [20] for the task of body
part recognition. In a later study, Girschick et al. [3] use the same methodology
with a regression forest, and let each pixel vote for joint coordinates. Detailed ex-
planation of both frameworks can be found in Chapter XXX.

The object recognition by parts approach is applicable to the hand pose estima-
tion problem as well, but there are some notable differences between the human
body and hand: i) The projected depth image of a hand is much smaller than that
of a body; ii) A body can be assumed to be upright but a hand can take any orien-
tation; iii) In the case of hands, the number of possible meaningful configurations
is much higher and the problem of self occlusion is severe. On the other hand, the
inter–personal variance of the shape of hands is much smaller compared to the huge
differences between fully clothed human bodies.

In this work, we largely follow the approach in [2]. Adopting the idea of an
intermediate representation for the object whose pose is to be estimated, we generate
synthetic hand images and label their parts, such that each skeleton joint is at the
center of one of the labeled parts. We form large datasets created from random
and manually set skeleton parameters, and train several randomized decision trees
(RDT) [20], which are then used to classify each pixel of the retrieved depth image.
Finally, we apply the mean shift algorithm to estimate the joint centers as in [2]. The
resulting framework can estimate hand poses in real time.

As a proof of concept, we demonstrate the system by using it to recognize ASL
digits. In our approach, we first train an RDF for ASL digits using synthetic im-
ages. Then, we evaluate real depth images of ASL and fit a skeleton to each image.
Finally, we classify the skeleton configuration parameters using SVM, which can
then be used to infer the hand shape class for a given real hand depth image, by
fitting a skeleton to it first. We demonstrate that this technique achieves a 99.9%
test accuracy on a dataset of size 15k, collected from five users. Note that there are
other simpler approaches to classify ASL digits. However, using the skeletal con-

Real Time Hand Pose Estimation using Depth Sensors 3

figuration to classify hand shapes is a powerful method, since the appearance of the
hand is entirely determined by the skeleton. This is reflected in the high success rate
the framework achieves. More importantly, this approach does not rely on class– or
application–specific heuristics and is directly applicable to all types of hand shapes.

1.1 Related Work

With the release of Kinect, libraries for basic hand gesture recognition tasks have
been developed. However, these only consider hand movement, and not hand pose.
The estimation of the hand skeleton configuration has largely remained unsolved.

1.1.1 Hand Pose Estimation

Most approaches to hand pose estimation problem make use of regular RGB cam-
eras. Erol et al. [4] divide the pose estimation methods into two main groups in
their review: partial and full pose estimation methods. They further divide the full
pose estimation methods into single frame pose estimation and model-based track-
ing methods. Athitsos et al. [5] estimate 3D hand pose from a cluttered image. They
create a large database of synthetic hand poses using an articulated model and find
the closest match from this database. Similarly, Romero et al. [6] propose a non-
parametric, nearest neighbor based search in a large database to estimate articulated
hand poses. De Campos and Murray [7] use a relevance vector machine [8] based
learning method for single frame hand pose recovery. They combine multiple views
to overcome the self-occlusion problem. They also report single and multiple view
performances for both synthetic and real images. Rosales et al. [9] use monocular
color sequences for recovering 3D hand poses. Their system maps image features to
3D hand poses using specialized mappings. Stergiopoulou and Papamarkos [10] fit a
neural network into the detected hand region. They recognize the hand gesture using
the grid of the produced neurons. De La Gorce et al. [11] use model-based tracking
of the hand pose in monocular videos. Stenger et al. [13] apply model-based track-
ing using an articulated hand model and estimate the pose with an unscented Kalman
filter. Bray et al. [14] propose an algorithm that wraps a particle filter around mul-
tiple stochastic meta–descent based trackers to form a smart particle filter that can
track an articulated hand pose. However, the resulting framework does not run in
real–time. Heap et al. [15] describe a 3D deformable point distribution model of
the hand, which is used to track hands using a single RGB camera.

A number of approaches have been reported to estimate the hand pose from depth
images. Mo and Neumann [16] use a laser-based camera to produce low-resolution
depth images. They interpolate hand pose using basic sets of finger poses and inter-
relations. Malassiotis and Strintzis [17] extract PCA features from depth images of
synthetic 3D hand models for training.

4 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

In a recent study Oikonomidis et al. [12] present a solution that makes use of
both depth and color images. They propose a generative single hypothesis model-
based pose estimation method. They use particle swarm optimization for solving
the 3D hand pose recovery problem, and report accurate and robust tracking in near
real-time (15 fps), with a GPU based implementation.

1.1.2 Hand Shape Recognition from Depth

Uebersax et al. propose a system that segments the hand and estimates the hand
orientation from captured depth data. Their letter classification method is based on
average neighborhood margin maximization. Liu and Fujimura [18] recognize hand
gestures using depth images acquired by a time-of-flight camera. The authors detect
hands by thresholding the depth data and use Chamfer distance to measure shape
similarity. Then, they analyze the trajectory of the hand and classify gestures using
shape, location, trajectory, orientation and speed features. Suryanarayan et al. [19]
use depth information and recognize scale and rotation invariant poses dynamically.
They classify six signature hand poses using a volumetric shape descriptor which
they form by augmenting 2D image data with depth information. They use SVM for
classification. [21] provides a thorough review of ASL letter recognition on depth
data.

In Section 2 we describe the methodology used for fitting the skeleton. Section 3
lists the details of conducted experiments and presents our results on ASL digit
recognition. Finally, we conclude the chapter in Section 4.

2 Methodology

The flowchart of the system can be viewed in Figure 1. The training phase is given in
the upper row, and the evaluation phase in the lower row. As there is no practical way
of labeling real depth images, only synthetic images are used for training. To this
end, the system employs a realistic 3D hand model that can be configured to form
new poses. Our framework handles automatic generation and labeling of synthetic
training images by manually setting or randomizing each skeleton parameter. It can
then form large datasets by interpolating poses and perturbing joints via addition
of Gaussian noise to each joint angle without violating skeleton constraints. These
synthetic datasets contain depth–label image pairs for each configuration. Typically,
datasets consisting of 40k to 200k image pairs are generated, which are used to train
the models. Each tree learns to map the pixels in a depth image to their correspond-
ing labels in the ground truth image. Multiple decision trees are trained that form
small ensembles, i.e. forests.

In the evaluation phase, an input depth image is fed into the trained RDF without
the ground truth labels. The trees in the RDF classify each depth pixel into a hand
part by assigning a set of posterior probabilities to it. The posterior probabilities

Real Time Hand Pose Estimation using Depth Sensors 5

of each tree are averaged over all the trees in the forest. Finally, the mean shift
algorithm is used to estimate the 3D coordinates of the centroids of each hand part.
The skeleton is formed by connecting the joint coordinates according to the model
hierarchy.

Fig. 1 Flowchart of the system. The top image depicts the training phase, and the bottom image
depicts the evaluation phase.

The overall accuracy of the system depends on a variety of factors, such as the
number of trees, the depth of individual trees, the degree of variation in the training
set and other training parameters. In particular, if the training images do not reflect
the variety of hand poses encountered in real life, the trees cannot generalize well to
unseen poses.

By synthesizing training images, it is possible to automatically create a very large
set of configurations. First, a smaller set of plausible and common hand poses is
manually created, from which new poses are generated by extrapolating and ran-
domizing these configurations.

2.1 Data

To generate the synthetic images, we use a 3D skinned mesh model with a hierar-
chical skeleton, consisting of 19 bones, 15 joints and 21 different parts as viewed in
Figure 2. Hand parts are defined such that all significant skeleton joints are located
near the centroids of corresponding parts. Hence, the thumb contains three parts and
all the other fingers contain four parts that signify each bone tip. The palm is divided
into two different parts, so that the deformations are better captured.

The model is animated and rendered with the texture depicting the hand parts,
without shading. The final color image is the label image, and the content of the
Z–buffer, which contains the depth map of the rendered pixels, is the depth image.

6 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

The magnitudes of the depth pixels are mapped to the interval [0,255] to minimize
memory cost. To retain compatibility with the incoming Kinect data, the input depth
images are also normalized to the same interval.

Fig. 2 The 3D hand model
with a hierarchical skeleton
and 21 labeled parts that is
used to generate a synthetic
training set. In the first image,
the skeleton is depicted with
yellow parts indicating the
joint locations. The second
image shows the parts, each
of which correspond to a joint
or bone tip in the skeleton.

(a) (b)

The training sets are designed with target applications in mind, so that the trained
trees can generalize well to previously unseen hand poses that can be encountered
during common tasks, such as hand poses used for games, natural interfaces and
sign languages, all of which are manually modeled using a tool. The animator tool
can interpolate between these poses using the hierarchical skeleton model, and add
slight variations to each frame by perturbing joint locations, while changing the
camera pose. Skeletal constraints are applied to each interpolated pose, ensuring
that the resulting configurations are feasible. A data glove, which measures the joint
angles of the hand in real time, can also be used to manipulate the digital model
and create realistic hand poses. It can also be used to estimate and better model the
inter-personal variations in hand shape, such as size, finger lengths and thickness.
However, the models trained on a synthetic dataset formed by manipulating a single
hand shape has been found to be sufficient for all types of hands, as inter-personal
variance is low for the hands, and the trained models can easily be adapted to dif-
ferent hand sizes by scaling feature parameters if necessary.

2.2 Decision Trees

Decision trees consist of split nodes, which are the internal nodes used to test the
input; and leaf nodes, which are the terminal nodes used to infer a set of posterior
probabilities for the input, based on statistics collected from training data. Each split
node sends the incoming input to one of its children, according to the test result. The
test associated with a split node is usually of the form:

fn (Fn)< Tn (1)

Real Time Hand Pose Estimation using Depth Sensors 7

where fn (Fn) is a function of a subset of features and Tn is a threshold, at split
node n. The input is injected at the root node, which is forwarded by the split nodes
according to the test results; and the posterior probabilities associated with the leaf
node that is reached are used to infer the class label. Hence, the training of a decision
tree involves determining the tests and collecting statistics from a training set.

Fig. 3 A decision forest. The
input pixels are tested at each
node and guided down the
tree, finally reaching a leaf
node that is associated with a
set of posterior probabilities,
which is estimated from
the label histogram of data
collected during the training.

In the case of an RDT, the features do not need to be determined beforehand.
Instead, the feature parameters are randomly sampled several times, and the test
that provides the best split, i.e. the maximum amount of information gain, is chosen.
This approach is particularly useful if the feature space is very large.

2.3 Randomized Decision Forest for Hand Pose Estimation

An RDF is an ensemble of RDTs trained on the same or slightly different datasets.
The input to an RDF is a depth image I, and a pixel location xxx. The output is a set
of posterior probabilities for each hand part label ci.

We use the same features as in [2]. Given a depth image I (xxx), where xxx denotes
location, we define a feature Fuuu,vvv (I,xxx) as follows:

Fuuu,vvv (I,xxx) = I
(

xxx+
uuu

I (xxx)

)
− I

(
xxx+

vvv
I (xxx)

)
(2)

The offsets uuu and vvv are relative to the pixel in question, and normalized according
to the depth at xxx. This ensures that the features are 3D translation invariant. Note
that, they are neither rotation nor scale invariant, and the training images should be
generated accordingly. The depth of background pixels and the exterior of the image
are taken to be a large constant.

Each split node is associated with the offsets uuu and vvv and a depth threshold τ .
The data is split into two sets as follows:

CL (uuu,vvv,τ) = {(I,xxx) |Fuuu,vvv (I,xxx)< τ} (3)
CR (uuu,vvv,τ) = {(I,xxx) |Fuuu,vvv (I,xxx)≥ τ} (4)

8 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

Here, CL and CR are the mutually exclusive sets of pixels assigned to the left and
right children of the split node, respectively.

In the training phase, each split node randomly selects a set of features, partitions
the data accordingly and chooses the feature that splits the data best. Each split is
scored by the total decrease in the entropy of the label distribution of the data:

S (uuu,vvv,τ) = H (C)− ∑
s∈{L,R}

|Cs (uuu,vvv,τ) |
|C|

H (Cs (uuu,vvv,τ)) (5)

where H (K) is the Shannon entropy estimated using the normalized histogram of
the labels in the sample set K. The process ends when the leaf nodes are reached.
Each leaf node is then associated with the normalized histogram of the labels esti-
mated from the pixels reaching it.

Starting at the root node of each RDF, each pixel (I,xxx) is assigned either to the
left or the right child until a leaf node is reached. There, each pixel is assigned a set
of posterior probabilities P(ci|I,xxx) for each hand part class ci. For the final decision,
the posterior probabilities estimated by all the trees in the ensemble are averaged:

P(ci|I,xxx) =
1
N

N

∑
n=1

Pn (ci|I,xxx) (6)

where N is the number of trees in the ensemble, and Pn (ci|I,xxx) is the posterior
probability of the pixel estimated by the tree with index n. Another option is to
multiply the posteriors. However, the trees are correlated, and multiplication is more
prone to the effects of noise.

The RDF assigns each leaf node a set of posterior probabilities by counting the
number of training pixels from every label that reach that node. This approach poses
an imbalance problem, if the number of training pixels significantly differ for labels.
Indeed, the number of training pixels for the palm is several orders of magnitude
larger than that of the finger tips. Hence, even a small portion of pixels from the palm
area dominates the posterior likelihoods of the leaf nodes it reaches. One solution is
to increase tree depth until all the leaves are pure. However, this causes overtraining
or over–confident posteriors, and reduces performance on test set. To prevent this, i)
we stratify the sampling process and ensure that an almost equal number of pixels
from each label are used for training; ii) we stop the splitting process if fewer than a
certain number of pixels are assigned to a node. This prevents overfitting and allows
better generalization.

Since only synthetic images are used for training, the RDFs must also general-
ize to real data as retrieved by the depth sensor. To ensure this, and to prevent the
RDF from memorizing artifacts or patterns associated with synthetic images, we
perturb both the skeletal configurations and the generated depth maps. In particular,
Gaussian noise is applied to each angle in the skeleton as well as to the depth infor-
mation. The Gaussian noise is applied to each depth pixel separately. The effect of
the resulting depth noise is depicted in Figure 4. The image on the left is a synthetic
depth image. Here, the contrast is maximized to make the artifacts visible. Note

Real Time Hand Pose Estimation using Depth Sensors 9

that the actual noise model of Kinect is very complex due to underlying algorithms.
Here, Gaussian noise is not applied to imitate the Kinect sensor, but rather to prevent
the RDF from memorizing the very precise depth information provided by a single
digital hand model, and to better generalize to the slightly different hand shapes of
actual people.

Fig. 4 The effect of added
depth noise. The image on the
left is the original synthetic
depth image. The image on
the right is the same image
with added Gaussian noise
(σ = 3).

2.4 Joint Position Estimation

After each pixel is assigned posterior probabilities, the result is used to estimate the
joint positions. To locate the actual joint coordinates, a number of approaches can
be employed, such as calculating the centroid of all the pixels belonging to a hand
part. However, finding the centroid is not robust against outliers, which is especially
a greater problem for smaller hand parts.

To reduce the effect of outliers, the mean shift local mode finding algorithm [22]
is preferred over finding the global centroid of the points belonging to the same
class. The mean shift algorithm estimates the probability density of each class label
with weighted Gaussian kernels placed on each sample. Each weight is set to be the
pixel’s posterior probability P(ci|I,xxx) corresponding to the class label ci, times the
square of the depth of the pixel, which is an estimate of the area the pixel covers,
indicating its importance. The joint locations estimated using this method are on the
surface of the hand and need to be pushed back to find an exact match for the actual
skeleton.

Starting from a point estimate, or seed, the mean shift algorithm uses a gradient
ascent approach to locate the nearest mode of the distribution. As the maxima are
local, several different starting points are used and the one converging to the maxi-
mum score is selected. Finally, a decision regarding the visibility of the joint is made
by thresholding the highest score reached during the mean shift phase. The joint po-
sitions estimated in this manner are then connected according to their configuration
in the hand skeleton, forming the final pose estimate.

At this point, it is possible to make use of temporal or spatial information to infer
a better skeleton estimate. For instance, a particle filter can be used to eliminate

10 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

sudden jumps in joint locations, and skeletal constraints can be used to disregard
some of the local maxima reached by the mean shift phase. An important constraint
is that the joints on a finger lie on a 3D plane, which can also be used to detect
occluded joints.

3 Experiments

Here, we report quantitative results for the hand pose estimation and hand shape
classification methods. First, we introduce the synthetic and real datasets used in
experiments.

3.1 Datasets

3.1.1 Synthetic dataset

Performance of RDFs on previously unseen poses depends heavily on the training
set provided. Ideally, we want the trained RDF to generalize to all possible hand
poses. However, the number of images that need to be synthesized for this ambi-
tious task is immense. A static hand pose is a single configuration of the 22–dof
skeleton. The number of possible configurations, even with a modest step size for
each angle, is huge. Moreover, simply rotating a single static pose in 3D to generate
all possible views with a step size of 15 degrees, produces 15k images per pose.
This suggests that the target application should determine the extent of the dataset.
Here, we choose the 24 static ASL letters, the 10 ASL digits, and six hand poses that
are widely known and used, such as the sign for OK. For the 40 poses selected and
manually synthesized with the hand model, we rotate the camera in 3D, perturb the
angles, and interpolate between the poses to generate 200k synthetic images. The
offline learning method of Section 2 can be used to train an RDF on this dataset.
However, to incorporate a larger dataset, incremental learning methods should be
preferred [23].

3.1.2 Real Dataset

For the hand shape classification task, both synthetic and real images can be used.
However, only the accuracy on a real set is of importance. Therefore, a dataset con-
sisting of real depth images retrieved from a Kinect depth camera is collected. Data
collection is simple; one needs to perform the sign for several seconds in front of the
sensor, while slightly moving and rotating the hand. We collected a dataset for the
ten ASL digits from five different people. Each shot takes ten seconds, amounting

Real Time Hand Pose Estimation using Depth Sensors 11

to a total of 300 frames for each digit per person. Hence, the dataset consists of 15k
images.

3.2 Effect of Model Parameters

The RDF parameters that have an effect on the classification accuracy are as follows:
i) The number of trees; ii) The tree depth; iii) The limits of uuu, vvv and τ; iv) The
number of feature samples tried at each node; v) Mean shift weight threshold; vi)
The number of mean shift seeds.

3.2.1 The Effect of the Forest Size

Training a large RDT by maximizing information gain is likely to produce over–
confident posteriors. Since posterior probabilities are averaged over all trees, in-
creasing the forest size produces smoother posteriors, alleviates overtraining, and
allows better generalization, while monotonously increasing test accuracy. This is
illustrated in Figure 5. The trade–off is the linear increase in memory and the time
it takes to test. We typically use one to four trees, as real time performance is of
importance in most application areas.

Fig. 5 The effect of the forest size on the test accuracy.

12 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

3.2.2 The Effect of the Tree Depth

The depth of a tree determines the number of tests to apply to the input. If the
depth is too large, noisy training data will be isolated by the tests, causing overtrain-
ing. Likewise, a shallow tree will produce low–confidence, high entropy posteriors.
Therefore, it is important to optimize the tree depth.

The effect of the tree depth is illustrated in Figure 6. Overtraining starts at around
depth 22, and the gain from increasing depth over 20 is minimal. As the need for
memory increases exponentially, we prefer setting the depth to 20.

In our implementation, a tree of depth D evaluates pixels using exactly D binary
comparisons. The number of internal nodes is 2D− 1, and the number of leaves is
2D.

Fig. 6 The effect of the tree depth on the test accuracy.

3.2.3 The Effect of the Feature Space

The feature space is determined by the maximum range of the offset parameters uuu, vvv
and τ . We use a single limit for both x and y coordinates of the uuu and the vvv parame-
ters, and a separate limit for the τ parameter. This defines the spatial context that can
be used for tests in the form of a cube around the pixel. Intuitively, taking a larger
context into account should increase the test accuracy. However, a fixed number of
parameter values are sampled at each node. Hence, incorporating a larger context
may reduce the probability of selecting good features that maximize information
gain for a split. Moreover, the training dataset must be large enough to prevent the

Real Time Hand Pose Estimation using Depth Sensors 13

RDT from overtraining, if it uses a large spatial context. This effect is visible for
different values of uuu and vvv limits in Figure 7. The optimum value for the limit of
uuu and vvv is estimated to be 23 pixel meters, i.e. 23 pixels if the hand is 1m away,
46 pixels if the hand is 50cm away, or 11.5 pixels if the hand is 2m away from the
camera. In our tests, we estimated the optimum value of τ to be 60mm.

Fig. 7 The effect of the limits of the offset parameters uuu and vvv on the test accuracy.

3.2.4 The Effect of the Sample Size

The sample size is the number of parameter values sampled from the feature space
for each internal node. Increasing the sample size increases the test accuracy, as it
is likelier to sample features that increase the information gain with a larger sample
size. The trade–off is the increase in training time. Since forest size must be small
due to memory constraints, the RDTs must produce confident posteriors. However,
as we are sampling from a fixed feature space, the effect of the sample size levels
off after some value. This is illustrated in Figure 8. For the fixed limit of 23 pixel
meters for uuu and vvv, the gain from increasing the number of trials is negligible after
sample size reaches 5000.

3.2.5 The Effect of the Mean Shift Parameters

Since hands are highly articulate and flexible objects, self occlusion of entire hand
parts is natural and happens frequently. In the ideal case, there should be no pixel

14 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

Fig. 8 The effect of the sample size on the test accuracy.

assigned to the hidden hand part. However, it is common that some pixels are mis-
classified. In such cases, the mean shift algorithm determines the joint location for
the hidden hand part based on the misclassified pixels only. Therefore, such spurious
joint estimates need to be eliminated.

A decision regarding the visibility of the joint is made by thresholding the highest
score reached during the mean shift phase. The effect of the thresholding process is
shown in Figure 9. Here, the images on the first column are the original pixel classi-
fication results, with colors assigned according to the highest posterior. The images
in the second column are the same images, with the corresponding joint locations
as estimated by the mean shift algorithm. The images on the third column are pro-
duced by eliminating joints that have low confidence values. Here, the confidence
is defined as the value of the peak reached during the mean shift phase, which is
evaluated using a combination of the pixel posteriors, joint bandwidth, which is a
measure of the spread of the joint, and the importance of the pixel, which is the
square of its depth, i.e. a measure of its area. The range of values depends on the
implementation, and we empirically estimated it to be around 0.4. In the upper row
of Figure 9, the threshold is set to 0.5, which eliminates legitimate joints. In the
middle row, the threshold is set to 0.4, and only spurious joints are eliminated. In
the lower row, the threshold is set to 0.2, leaving one spurious joint intact.

Mean shift is a local mode finding method that only finds the closest maximum.
To increase the likelihood of converging to the global maximum, we start multiple
times from different seed points. The maximum with the highest score is selected,
once all iterations converge. Seeds are randomly selected from the list of pixels with
posterior probabilities higher than a certain value. We empirically determined this
likelihood to be 0.35. The effect of the number of seeds is illustrated in Figure 10.

Real Time Hand Pose Estimation using Depth Sensors 15

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9 In the upper row, the confidence score threshold is set too high (0.5), eliminating true joints.
In the middle row, the threshold is set correctly (0.4) and only the spurious joints are eliminated.
In the lower row, the threshold is set too low (0.2), leaving one spurious joint intact.

Here, the rows depict two examples, and the columns correspond to seed numbers
1, 2, 3 and 4, respectively. The higher this number, the likelier it is to converge to
the correct joint locations. The trade–off is the increase in joint estimation time. In
practice, we start from up to 20 different seeds.

3.3 Hand Pose Estimation Results

A synthetic dataset of size 200k formed with 40 hand poses is used to conduct
hand pose estimation experiments. First, 5× 2 cross–validation strategy is used to
determine the best parameters. In this method, the dataset is randomly divided into
two sets. In the first run, the model is trained on the first set and tested on the second
set. In the second run, the model is trained on the second set and tested on the
first set. This procedure is repeated on five randomly created pairs, and the average
accuracy is regarded as a robust estimation of the success rate. The optimal forests
are achieved with the parameters reported in Section 2: i) Forest size = 4; ii) Tree

16 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10 The effect of the number of starting points for the mean shift algorithm. The columns
correspond to number of seeds 1, 2, 3 and 4, respectively.

depth = 20; iii) Offset limit = 23 pixel–meters; iv) Sample size = 5000; v) Mean
shift seed posterior threshold = 0.35; vi) Number of seeds = 20. The test accuracy
of the resulting RDF is also determined with 5×2 cross–validation. The per–pixel
classification accuracy (using hard labels) on this dataset is 67.5%.

Another important measure of error is the average distance between the esti-
mated joint coordinates and the ground truth. However, spurious joints, especially
misplaced finger tips, have a large effect on this type of error. Therefore, we esti-
mate the number of spurious or missing joints as an indicator of the error instead.
Hence, we count the number of correct joints in the test dataset, and divide it over
the number of visible joints. The visibility of the joints is determined automatically,
and correctness of a joint estimation is determined by thresholding the projected dis-
tance between the estimated and actual joint coordinates. For the synthetic dataset
of size 200k, with 40 poses, 82.1% of the visible joints are estimated correctly. For
a smaller dataset of size 20k, formed by ASL digits only, the method is able to find
97.3% of the joints correctly. Most of the error in the latter case is attributable to
misplaced finger tips.

3.4 Proof of Concept: American Sign Language Digit Recognizer

To test the system on a real world application, we developed a framework for clas-
sifying ASL digits in real–time. The method described in Section 2 gives estimates
of the hand skeleton as output. The pose classifier uses these estimates to recognize
the digits by mapping the estimated joint coordinates to known hand poses.

Real Time Hand Pose Estimation using Depth Sensors 17

First, the RDF is trained on a synthetic ASL digit dataset of size 20k, so that it
learns to extract the skeleton from poses that closely resemble ASL digits. Then,
this RDF is used to evaluate the real depth images acquired from the Kinect, while a
user is performing ASL digits. A training set is formed using the extracted skeleton
parameters by properly labeling each hand skeleton according to its corresponding
hand shape. Such a training set can be used to train classifiers in a supervised man-
ner. These shape classifiers can then be used to map the extracted hand skeletons
into ASL digits in real time.

3.4.1 Hand Shape Classifiers

As the intended usage of the system is real–time recognition of ASL digits, speed
is as important as the recognition rate. We choose artificial neural networks (ANN),
since they are fast, and SVMs, since they are accurate. We use 5×2 cross–validation
strategy for both model selection and to test accuracy. Model selection for the RDF
is done only on the synthetic dataset.

3.4.2 Model Selection on the Synthetic Dataset

Both the RDFs and the skeleton classifiers need to be optimized. To select an RDF
model, a synthetic dataset needs to be used, since there is no ground truth labels
that are associated with real data. We optimized ANN and SVM separately for both
synthetic and real datasets. The synthetic dataset consists of 20k samples, formed by
2k synthetic images for each of the ASL digits. The RDF parameters are as reported
in Section 3.3. For the ANN, the optimum number of hidden nodes is estimated to
be 20. For SVMs, the optimal parameters are found to be 26 for the cost parameter
and 2−4 for the Gaussian spread (γ).

The test accuracies and evaluation times are listed in Table 1. The first column
gives the average accuracies achieved by the cross–validation tests. The second col-
umn gives the evaluation times. Evidently, ANN is significantly faster than SVM.
However, SVM performs slightly better on the test data. The intermediate phases
and the final skeletons for several examples are given in Figure 11.

Table 1 Classification rates and evaluation times of each classifier on the ASL digit dataset con-
sisting of 20k synthetic images.

Method Accuracy Classification
Name Duration (ms)
ANN 99.89 0.0045
SVM 99.96 0.3

18 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

3.4.3 ASL Digit Classification Results on Real Data

We conducted 5×2 cross–validation and grid search to estimate the optimal param-
eters of ANN and SVM again for the real dataset. Table 2 shows the parameters
tested.

Table 2 Tested parameter values (H: hidden nodes, C: SVM cost, γ: Gaussian spread)

Method Parameter
Name Values
ANN H = {5,10,15,20,25,30,35,40,45,50,55}
SVM C = {2−1,20,21,22,23,24,25,26,27}
SVM γ={2−5,2−4,2−3,2−2,2−1,20,21}

Table 3 Optimal parameters, average training and validation accuracies.

Method Optimal Training Validation
Name Parameters Accuracy Accuracy
ANN Hidden nodes = 40 99.27 98.81
SVM Cost=25, Γ = 2−2 100 99.90

Table 3 lists the optimal parameters and recognition rates on training and vali-
dation sets for ANNs and SVMs for real data. SVMs outperform ANNs and reach
nearly perfect accuracy on the validation set, indicating that the descriptive power
of the estimated skeleton is sufficient for the task of hand shape classification on
real depth images.

4 Conclusion

In this study, we described a depth image based real–time skeleton fitting algorithm
for the hand, using RDFs to classify depth image pixels into hand parts. To produce
the huge amount of samples that are needed to train the decision trees, we devel-
oped a tool to generate realistic synthetic hand images. Our experiments showed
that the system can generalize well when trained on synthetic data, backing up the
claims of Shotton et al. in [2]. In particular, just by feeding manually designed hand
poses corresponding to ASL digits to the RDFs, the system learned how to correctly
classify the hand parts for real depth images of hand poses that are close enough.
This in turn enabled us to collect real data labeled by the RDFs that can be used for
further pose classification tasks. We demonstrated the efficiency of this approach by
reaching a recognition rate of 99.9% using SVMs on real depth images retrieved

Real Time Hand Pose Estimation using Depth Sensors 19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 11 Examples of extracted skeletons on synthetic ASL images. Upper row lists the depth im-
ages. Middle row shows the per pixel classification results. Third row displays the estimated joint
locations on top of the labeled images. The finalized skeleton is shown in the lower row.

with Kinect. The features used by SVMs are the mean shift based joint estimates
calculated in real time from the per pixel classification results.

We focused on optimizing the speed and accuracy of the system, in particular by
performing grid search over all model parameters. The resulting framework is capa-
ble of retrieving images from Kinect, applying per pixel classification using RDFs,
estimating the joint locations from several hypotheses in the mean shift phase, and
finally using these locations for pose classification in real–time. The system is op-
timized for multicore systems and is capable of running on high end notebook PCs
without experiencing frame drops. Further enhancement is possible through the uti-
lization of the GPU, as described in [24], and this framework can be used along with

20 Cem Keskin, Furkan Kıraç, Yunus Emre Kara and Lale Akarun

more CPU intensive applications such as games and modelling tools. This method
is one of the first to retrieve the full hand skeleton in real time using a standard PC
and a depth sensor, and has the extra benefit of not being affected by illumination.

The main focus of this study is skeleton fitting to the hands from a single frame.
Consequently, temporal information is ignored, which can certainly be used to en-
hance the quality of the fitted skeleton, via methods such as Kalman [25] or particle
filtering [26].

References

1. Microsoft Corp. RedmondWA. Kinect for Xbox 360 2
2. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A.,

Blake, A.: Real-time human pose recognition in parts from single depth images. In Proc.
Computer Vision and Pattern Recognition (2011) 2, 7, 18

3. Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient Regression of
General-Activity Human Poses from Depth Images. In Proc. International Conference on
Computer Vision (2011) 2

4. Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose esti-
mation: A review. Computer Vision and Image Understanding. 108, 52–73 (2007) 3

5. Athitsos, V., Sclaroff, S.: Estimating 3D hand pose from a cluttered image. In Proc. Computer
Vision and Pattern Recognition (2003) 3

6. Romero, J., Kjellstrom, H., Kragic, D.: Monocular real-time 3D articulated hand pose esti-
mation. Humanoids 87–92 (2009) 3

7. De Campos, T.E., Murray, D.W.: Regression-based Hand Pose Estimation from Multiple
Cameras. n Proc. Computer Vision and Pattern Recognition (2006) 3

8. Tipping, M.E., Smola, A.: Sparse Bayesian Learning and the Relevance Vector Machine.
Journal of Machine Learning Research 1 211-244 (2001) 3

9. Rosales, R., Athitsos, V., Sigal, L., Sclaroff, S.: 3D hand pose reconstruction using specialized
mappings. In Proc. International Conference on Computer Vision (2001) 3

10. Stergiopoulou, E., Papamarkos, N.: Hand gesture recognition using a neural network shape
fitting technique. Engineering Applications of Artificial Intelligence 22 1141–1158 (2009) 3

11. De La Gorce, M., Fleet, D.J., Paragios, N.: Model-Based 3D Hand Pose Estimation from
Monocular Video. IEEE Trans. Pattern Analysis and Machine Intelligence, Feb. 1–14 (2011)
3

12. Oikonomidis, I., Kyriazis, N., Argyros, A.: Efficient model-based 3D tracking of hand artic-
ulations using Kinect. In Proc. of the 22nd British Machine Vision Conference (2011) 4

13. Stenger, B., Mendonça, P.R.S., Cipolla, R.: Model-based 3D tracking of an articulated hand.
In Proc. Computer Vision and Pattern Recognition (2001) 3

14. Bray, M., Koller-Meier, E., Van Gool, L. J.: Smart particle filtering for high-dimensional
tracking. Computer Vision and Image Understanding 106 116–129 (2007) 3

15. Heap, T., Hogg, D.: Towards 3D hand tracking using a deformable model. International Con-
ference on Automatic Face and Gesture Recognition 140–145 (1996) 3

16. Mo, Z., Neumann, U.: Real-time Hand Pose Recognition Using Low-Resolution Depth Im-
ages. In Proc. Computer Vision and Pattern Recognition (2006) 3

17. Malassiotis, S., Strintzis, M.: Real-time hand posture recognition using range data. Image and
Vision Computing 26 1027–1037 (2008) 3

18. Liu, X., Fujimura, K.: Hand gesture recognition using depth data. In Proc. Automatic Face
and Gesture Recognition (2004) 4

19. Suryanarayan, P., Subramanian, A., Mandalapu, D.: Dynamic Hand Pose Recognition Using
Depth Data. In Proc. International Conference on Pattern Recognition (2010) 4

Real Time Hand Pose Estimation using Depth Sensors 21

20. Breiman, L.: Random Forests. Machine Learning 45 5–32 (2001) 2
21. Uebersax, D., Gall, J.,Van den Bergh, M., Van Gool, L.: Real-time sign language letter and

word recognition from depth data. In Proc. International Conference on Computer Vision
(2011) 4

22. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. Pattern
Analysis and Machine Intelligence 24 603–619 (2002) 9

23. Basak, J.: Online Adaptive Decision Trees: Pattern Classification and Function Approxima-
tion. Neural Computation 18 2062–2101 (2006) 10

24. Sharp, T.: Implementing Decision Trees and Forests on a GPU. European Conference on
Computer Vision (2008) 19

25. Welch, G., Bishop, G.: An Introduction to the Kalman Filter (1995) 20
26. Isard, M., Blake, A.: CONDENSATION - conditional density propagation for visual tracking.

International Journal of Computer Vision 29 5–28 (1998) 20

