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Abstract

This paper proposes a novel algorithm to perform hand
shape classification using depth sensors, without relying on
color or temporal information. Hence, the system is inde-
pendent of lighting conditions and does not need a hand
registration step. The proposed method uses randomized
classification forests (RDF) to assign class labels to each
pixel on a depth image, and the final class label is deter-
mined by voting. This method is shown to achieve 97.8%
success rate on an American Sign Language (ASL) dataset
consisting of 65k images collected from five subjects with
a depth sensor. More experiments are conducted on a sub-
set of the ChaLearn Gesture Dataset, consisting of a lexi-
con with static and dynamic hand shapes. The hands are
found using motion cues and cropped using depth informa-
tion, with a precision rate of 87.88% when there are mul-
tiple gestures, and 94.35% when there is a single gesture
in the sample. The hand shape classification success rate
is 94.74% on a small subset of nine gestures correspond-
ing to a single lexicon. The success rate is 74.3% for the
leave–one–subject–out scheme, and 67.14% when training
is conducted on an external dataset consisting of the same
gestures. The method runs on the CPU in real–time, and
is capable of running on the GPU for further increase in
speed.

1. Introduction

Hand gestures are a natural part of human interaction.
They play a complementary role for speech and a primary
role for sign languages. Therefore, attempts to use the hand
gesture modality in human computer interaction (HCI) has
intensified research efforts for hand pose tracking and ges-
ture recognition in the last decade.

Hand gesture recognition studies have initially relied
on 2D models [5]. Although pose variability and occlu-
sion limit the success of 2D approaches, successful mod-

els relying on partial models have been defined [15]. Ap-
proaches using articulated 3D models have relied on color
images [3, 1, 13, 16, 4], as well as the use of multiple cam-
eras or time-of-flight sensors [10, 9]. These approaches
have achieved good performances even in the presence of
occlusions and pose changes, though their time perfor-
mances have limited their application in real time HCI ap-
plications [11].

Two developments have recently accelerated implemen-
tations of HCI using human body and hand gestures: The
first is the release and widespread acceptance of the Kinect
depth sensor. With its ability to generate depth images in
very low illumination conditions, this sensor makes the hu-
man body and hand detection and segmentation a simple
task. The second development is the use of fast discrimi-
native approaches using simple depth features coupled with
GPU implementation; enabling real time human body pose
extraction [14, 6].

The approaches for human body pose detection using the
Kinect camera use a variety of techniques: Shotton et al.
[14] use a large amount of labeled synthetic images to train
an RDF [2] for the task or body part recognition. In a later
study, Girschick et al. [6] use the same methodology, but
let each pixel vote for joint coordinates; and learn the vot-
ing weights from data. [18] relies on pre–captured motion
exemplars to estimate the body configuration as well as the
semantic labels of the point cloud. [8] uses an upper body
model, and tracks it using a hierarchical particle filter. Al-
though these ideas may be extended to extracting the 3D
pose of the hand, the problem is made more difficult by the
increased pose variability and self-occlusion.

In our previous work, we adapted the methodology of
body pose estimation used in [14] to the hand [7]. In this
work, a large synthetic dataset was generated using a realis-
tic hand model, and RDFs were trained to assign each pixel
a hand part label. Finally, mean shift algorithm was used to
estimate the centers of hand parts to form the hand skele-
ton. Additionally, SVM and ANN were used to classify ex-
tracted skeleton parameters into hand shapes. However, the
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Figure 1. Flowchart for the hand shape classification process. The
upper row illustrates the hand detection process. The lower row
shows the shape classification process.

success rate of this approach is dependent on the accuracy
of the skeleton, which can only be retrieved using synthetic
images. In this work, we follow a more direct approach and
alleviate the need for a synthetic model. Namely, a novel
RDF that we call a Shape Classification Forest (SCF) is
used to classify each depth pixel into a hand shape, instead
of a hand part. We show that this classifier is significantly
easier to train using real depth images, does not depend on
the accuracy of hand pose estimation, and evaluates faster.
The flowchart for the framework is depicted in Figure 1.
The system retrieves the image, filters it for noise and com-
pression artifacts around missing values, detects, tracks and
segments the hand using motion cues, and classifies each
pixel into a shape label. The final shape label is determined
via voting using all the pixels.

The performance of the novel shape classification
method is evaluated on the publicly available ASL letter
dataset of [12] and is shown to achieve a success rate of
97.8%. Multi-user ASL letter recognition is a difficult task,
and comparable good results to ours have been reported in
the literature on other datasets. [17] provides a good re-
view of ASL letter recognition on depth data. We also test
the system on the ChaLearn Gesture Dataset (CGD2011).
This dataset consists of several lexicons of gestures, each
of which are intended for different kinds of applications,
such as games, sign language, driving and dancing. For the
experiments, a lexicon consisting of nine hand gestures is
selected. The hands are detected using motion cues, and
segmented from each video sample with a precision rate of
87.88% when there are multiple gestures, and 94.35% when
there is a single gesture in the sample. Hand shape classifi-
cation accuracy is measured using three different schemes.
In the first case, training is conducted on half of the dataset,
and the model is tested on the other half, reaching a success
rate of 94.74% on a small subset of nine gestures corre-
sponding to a single lexicon. In the second scheme, a sub-
ject is left out from the training set, and tests are done on the
samples from this subject, which is called the leave–one–
subject–out scheme. The success rate is 74.3% for this chal-

lenging case. To further test the generalization power of the
model, we collected a dataset consisting of 4500 images by
performing the same gestures in the target lexicon. While
the model achieved a recognition rate of 99.5% on this sim-
pler dataset, it scored 67.14% when tested on CGD2011.
About 70% of the error is attributable to the mix-up of two
similar gestures in this case.

The paper is organized as follows: In Section 2 we de-
scribe the novel hand shape classification method. Section 3
discusses the experiments conducted on the datasets used in
evaluation. Finally, we conclude the paper and discuss fu-
ture work in Section 4.

2. Hand Shape Classification
Hand shape classification is the act of assigning a class

label c to an input image I , representing a certain configura-
tion of the hand. The method described here uses depth and
translation invariant features extracted from a depth image
to infer the class label.

The approaches used to estimate body and hand pose
in [14] and [7] respectively, use RDFs to assign a part label
to each pixel in the input image. Inspired by these methods,
we formulate an RDF for hand shape recognition, in which
every pixel votes for a hand shape label instead of a hand
part label. The final class label is determined by majority
vote.

2.1. Decision Trees

Decision trees consist of split nodes, which are the inter-
nal nodes used to test the data, and leaf nodes, which are
the terminal nodes used to infer the posterior probability of
the data, based on statistics collected from past data. Each
split node sends the incoming input to one of its children
according to the test result. The test associated with a split
node is usually of the form:

fn(Fn) < Tn (1)

where fn(Fn) is a function of a subset of features and Tn
is a threshold, at split node n. The input is injected at the
root node, which is forwarded by the split nodes according
to the test results, and the posterior probabilities associated
with the leaf node that is reached are used to infer the class
label. Hence, the training of a decision tree involves deter-
mining the tests and collecting statistics from a training set.
A decision tree is depicted in Figure 2.

In the case of a randomized decision tree, the features
are randomly selected. Each nodes uniformly samples mul-
tiple feature parameters from a large feature space, and the
corresponding test that provides the best split is chosen.

2.2. Shape Classification Forest

The input to a Shape Classification Tree (SCT) is a depth
image I , and a pixel location x, describing a pixel and its



Figure 2. A Shape Classification Tree is essentially a Randomized
Decision Tree with shape label histograms at the leaves.

Figure 3. SCT training images: The first four images are real depth
images and their labels, and the rest of the images are synthetic
depth images and their labels.

local context. The output is a set of posteriors for the shape
class label Ck assigned to the pixel. SCTs can be trained
with both real and synthetic data, consisting of a set of
depth images and their respective class labels. An exam-
ple is given in Figure 3. Typically, images from the same
hand shape and different angles should be assigned the same
shape class label to ensure viewing angle independence, un-
less the shape itself it angle dependent. The features used
in [7] and [14] proved to be fast and efficient, which are also
used fr SCT. Given a depth image I(x), where x denotes
location, we define a feature Fu,v(I,x) as follows:

Fu,v(I,x) = I(x+
u

I(x)
)− I(x+

v

I(x)
) (2)

The offsets u and v are relative to the pixel in question,
and normalized according to the depth at x to ensure depth
invariance. The depth of background pixels and the exterior
of the image are taken to be a large constant.

Each split node is associated with a pair of offsets u and
v and a depth threshold τ . The data is split into two sets as
follows:

CL(u,v, τ) = {(I,x)|Fu,v(I,x) < τ} (3)
CR(u,v, τ) = {(I,x)|Fu,v(I,x) >= τ} (4)

Here, CL and CR are the mutually exclusive sets of pix-
els assigned to the left and right children of the split node,
respectively.

In the training phase, each split node randomly selects a
set of features, partitions the data accordingly and chooses
the feature that splits the data best. Each split is scored by

the information gain:

S(u,v, τ) = H(C)−
∑

s∈{L,R}

|Cs(u,v, τ)|
|C|

H(Cs(u,v, τ))

(5)
where H(K) is the Shannon entropy estimated using the
normalized histogram of the labels in the sample setK. The
process ends when the leaf nodes are reached. Each leaf
node is then associated with the normalized histogram of
the labels estimated from the pixels reaching it.

Starting at the root node of each SCT, each pixel (I,x)
is assigned either to the left or the right child until a leaf
node is reached. There, each pixel is assigned a posterior
P (ci|I,x) for each hand shape class ci. For the final deci-
sion, the posterior probabilities estimated by all the trees in
the ensemble are averaged:

P (ci|I,x) =
1

N

N∑
n=1

Pn(ci|I,x) (6)

where N is the number of trees in the ensemble, and
Pn(ci|I,x) is the posterior probability of the pixel esti-
mated by the tree with index n. We call this ensemble
a Shape Classification Forest (SCF). To determine a final
hand shape label, the posterior probabilities of every pixel
in the input image are averaged, and the label that maxi-
mizes this term is selected:

c∗ = argmax
ci

1

M

M∑
m=1

P (ci|I,xm) (7)

where M is the number of foreground pixels in the input
image, and c∗ is the determined hand shape class label.

2.3. Shape Classification Pipeline

SCF is meant to assign posteriors to the pixels that are
known to belong to the hand. Therefore, the hand needs
to be detected and segmented before the evaluation step.
Corresponding pipeline is illustrated in Figure 1.

First, the depth images are denormalized to retrieve the
original depth values in the metric system. This step is re-
quired, when compressed media is used instead of a depth
sensor. Compression also creates blending artifacts around
the missing pixels caused by interpolation. Therefore, we
dilate the depth shadows and assign them a large depth
value to push them to the background. The denormalized
images are then used to calculate the difference images be-
tween consecutive frames. The effect of the depth noise is
cancelled by ignoring smaller differences at this step. The
rest of the differences are accumulated for each image to
calculate the total activity in the scene. A typical plot is
given in Figure 4.



Figure 4. A typical activity plot corresponding to a gesture. The
two peaks correspond to the arm movements from and to the rest-
ing position. The actual gesture is performed between the peaks in
the case of static or dynamic hand shape based gestures.

The peaks in the activity plot correspond to the harsh
movements of the hand, in particular to raising and lower-
ing it. We detect the hand during the first high activity pe-
riod (determined empirically by examining many samples),
where it is assumed that the largest moving object is the
hand. To isolate moving objects, a depth–aware connected
component method is employed. When the activity is low,
it is assumed that the hand is stationary, and the last known
position of the hand is regarded as its current position.

A box around the hand, with each side equivalent to 40
cm calibrated to the current depth of the hand, is cropped
from the depth image. Finally, background is segmented
and eliminated from the cropped image by depth threshold-
ing. Some samples are given in the first row of the Figure 6.

This method is designed to locate and track the hand
when it is fast, and look for it in the last known locations
when the hand stops moving. False positives have a larger
impact on the recognition accuracy, as it leads to misclassi-
fication. Therefore, precision is favored over recall rate, and
only images that are most likely to be the hand are retrieved.

Once the hand is segmented, each pixel is evaluated us-
ing SCF, and the final hand shape is determined by voting
as described in Section 2.2.

3. Experiments
Several experiments are conducted on a publicly avail-

able ASL dataset and on CGD2011 to test the accuracy and
efficiency of the SCF.

3.1. ASL Dataset

The accuracy of the SCF is first tested on a dataset con-
sisting of 65k depth and color hand images corresponding
to 24 of the 26 ASL letters (omitting non–static letters j and
z) performed by five subjects [12]. We disregard the color
images, and further segment the hands in the depth images
from their backgrounds.

Pugeault et al. reported their results on this dataset us-
ing both leave–one–subject–out cross–validation and by us-
ing half of the set for training and half for validation. For
the former validation technique, we employed four trees of

(a) (b)

Figure 5. Confusion matrix for the ASL letter classification task
using SCF on the Pugeault dataset with 24 letters and five sub-
jects [12]. a) Leave–one–subject–out with a success rate of 84.3%.
b) Half training–half validation, with a success rate of 97.8%. The
main source of error is the similarity of the poses for the letters M ,
N and T in ASL.

depth 20, and sampled 1000 features at each node. SCF
achieved a recognition rate of 84.3%, while [12] report
47%. For the latter, an SCF consisting of a single tree
reached 97.8%, compared to 69% using only depth features,
and 75% using both depth and color features [12]. We pro-
vide the confusion matrices in Figure 5. Evidently, the main
source of error is the similarity of the poses for the letters
M ,N and T in ASL. Disregarding such similar hand shapes
or using depth sensors with higher resolution can further in-
crease the success rate. Table 1 lists these values.

Half vs. Half Leave–one–out
Pugeault Depth 69% N/A

Pugeault Color + Depth 75% 47%
SCF 97.8% 84.3%

Table 1. Comparison of the proposed method with the approach of
Pugeault et al. [12].

3.2. ChaLearn Gesture Dataset

The system is also tested on an unnamed lexicon of the
public CGD2011 dataset, which consists of static or dy-
namic hand shapes only. In the case of dynamic hand ges-
tures, each image is independently labeled, ignoring tempo-
ral information. We cannot provide comparisons with other
work, as this dataset was released recently.

Unlike the former ASL dataset, CGD2011 does not pro-
vide extracted hand images, as the dataset contains body
gestures as well. The depth image streams are compressed
in the form of AVI files. Hence, a denormalization step is
necessary, and we retrieve the cropped hand images as ex-
plained in Section 2.3.

Hand detection precision is 94.35% for the samples that
contain a single instance of a static or dynamic hand shape.



Figure 6. Pixel classification results. The first row corresponds
to the depth images of the hand as extracted from videos in
CGD2011. The second row consists of samples from the exter-
nal dataset collected by performing the same gestures. Spatial and
depth resolution is better for these images. The third row gives
the per pixel classification results. Each pixel is colored according
to the shape label that corresponds to the mode of their posterior
probabilities.

For the samples that contain one or more gestures, in which
the performer returns to the resting position between each
gesture, the precision falls to 87.88%. Even though the re-
call rate is lower, the system manages to retrieve multiple
relevant frames from each gesture sequence, thereby en-
abling correct classification.

Three types of tests are conducted to test the accuracy
and generalization power of the system. In the first type of
test, an SCF is trained on half of the samples in the dataset,
and tested on the other half. The system achieves a success
rate of 94.74% on a small subset of nine gestures corre-
sponding to a single lexicon in CGD2011. In the second
type of test, the models are trained on the dataset samples
by leaving one subject out. Then, the model is tested on the
samples from the subject that is left out. This scheme is con-
sidered to be more challenging, as it requires generalization
to subjects that do not exist in the dataset. The success rate
is 74.3% in this case, using five subjects. As expected, the
score is lower than that of the similar scheme on the ASL
dataset, which is estimated to be 84.3%. The main reason
is the quality difference of both datasets. Unlike CGD2011,
the ASL dataset provides higher spatial and depth resolu-
tion, and the hand images are cropped manually.

In the final type of test, a new dataset is collected by per-
forming the same gestures as in the lexicon. We collected a
total of 4500 images from a single subject, with 500 images
for each of the nine hand shapes. Some samples are given
in the second row of Figure 6. The model is trained on this
external dataset, and is tested on CGD2011. This scheme is
more challenging than the leave–one–out scheme, because

Figure 7. Confusion matrix for the third type of experiment. The
SCF is trained using the external dataset collected, which is then
tested on CGD2011 samples. The overall success rate is 67.14%.
However, most of the error is caused by the last two gestures, that
are extremely similar. The success rate on the rest of the gestures
reaches 92.54%.

now the model needs to generalize from a single subject,
and the quality and resolution of the data differs from that
of CGD2011. SCF achieved a recognition rate of 99.5% on
this simpler dataset, when half of it is used for training and
half of it is used for testing. Next, an SCF trained on the
entire dataset is tested on CGD2011. The model achieved
a score of 67.14% for this challenging scheme. These re-
sults are given in Table 2. The three columns correspond to
the three testing schemes. Per pixel classification results for
this case are given in the third row of Figure 6. The confu-
sion matrix is depicted in the Figure 7. Evidently, most of
the error is caused by two hand shapes that are very similar.
Disregarding these shapes further increases the recognition
rate to 92.54%.

Half vs. Half Leave–one–out External Training
94.74% 74.3% 67.14%

Table 2. Success rates of different types of experiments.

4. Discussions and Conclusion

In this work, SCF is proposed as an effective solution to
hand shape classification, which is demonstrated on a large
ASL dataset and CGD2011. In comparison to recent work
on the same dataset [12], SCF performs significantly better:
97.8% versus 69% when using half of the trainings set for
training and the rest for validation, and 84.3% versus 47%
in the case of leave–one–subject–out.

For CGD2011, we introduced a method that automati-
cally finds and segments the hands from each video sample
with a precision rate of 87.88% when there are multiple ges-
tures, and 94.35% when there is a single gesture in the sam-
ple. We conducted several different types of experiments.
The hand shape classification success rate is estimated to
be 94.74% on a single lexicon of CGD2011. The success
rate is 74.3% for the leave–one–subject–out scheme using



four subjects for training and one subject for testing. We
also collected a new dataset consisting of 4500 images by
performing the same gestures in the lexicon. We trained
the system on this dataset and tested on CGD2011, and
achieved a score of 67.14%. These results show that SCFs
are especially accurate if the training set contains samples
similar to the one being tested. Also, SCFs have promising
generalization capabilities, as demonstrated by the fact that
they can effectively generalize to unseen subjects.

SCF runs at 30 frames per second on the CPU in real–
time, and is capable of running on the GPU for further in-
crease in speed. Furthermore, in contrast to the skeleton
classification method introduced in [7], SCF can be trained
using real depth images and require a smaller training set.
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