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Abstract

As a widely accepted information transfer method in the nanonetworking do-

main, molecular communication via diffusion (MCvD) presents many advan-

tages as well as challenges. In order to assess the capabilities and restrictions

of MCvD, a thorough understanding of the reception process through the first

passage time distribution holds utmost importance. As the network setup be-

comes more realistic, analytical derivations become increasingly difficult. Using

statistical methods on empirical data is a remedy to this challenge. In this pa-

per, we propose two novel heavy-tail distributions, which are well-equipped to

model the first passage time distribution for a reflective sphere transmitter and

a fully absorbing sphere receiver pair. We present their modeling power using

the Kolmogorov-Smirnov goodness of fit test and how the modeling performance

behaves under diverse deployment parameters. We also discuss the probability

of molecule absorption, signal-to-interference ratio, and the advantages of using

a reflective sphere transmitter.
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1. Introduction

Nanotechnology, as a key technology with a variety of current and potential

future applications, deals with matter in the atomic and the molecular scale

[1]. Nanomachines are used to describe devices ranging in size from 0.1 µm

to 10 µm and constructed of nano or molecular scale components [2]. Apart5

from the man-made nanomachines, bioengineered cells that are programmed

for a specific task and have basic signaling capabilities [3] are also regarded as

nanomachines from this study’s point of view.

Operating at the nano-scale is expected to require high cooperation among

multiple devices to make an impact on the macro scale. Clusters composed10

of such machines or cells cooperating with each other enable the realization of

complex applications such as health monitoring, tissue engineering, biomedicine,

nanomedicine, and environment monitoring [4, 5]. Therefore, communication

between these nodes is of high importance and the communication in that scale

has different characteristics. Nanonetworking is a rapidly growing area of re-15

search due to the high level of collaboration needed by these devices. Specifically,

it deals with the communication between nano and/or micro scale machines that

has at least one component in the nano scale (up to 100nm according to the

definition of IEEE P1906.1 [6]), and controlled or engineered by humans.

Having ties to nanotechnology, biotechnology, and communication technol-20

ogy, molecular communication is an ever-growing interdisciplinary research area

in the nanonetworking domain [4]. Molecular communication via diffusion

(MCvD) focuses on micro- and nanomachines communicating through molecules

emitted into a viscous communication medium. The infrastructureless nature

and the propagation of molecules by free diffusion makes MCvD a very effective25

and energy efficient method of communication. The emitted molecules, called

messenger molecules (MM), are the main instrument of information transmission

through the environment. After emission, the MMs roam the communication

medium according to the laws of free diffusion and the physical characteristics of

the channel. Some of the MMs hit the receiver and the properties (type, amount,30
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concentration, etc.) of the received molecules define the received signal.

From the communications perspective, one of the most critical components

of assessing the capabilities and restrictions of MCvD is understanding the re-

ception process. Many works in the literature define the reception process as

the absorption and removal of the MMs from the communication environment35

[7, 8, 9, 10, 11]. In this case, MMs can only contribute to the received signal

once. The duration from which an MM is released into the environment up to

its removal from the environment upon contact with the receiver is called the

first passage time. In the literature, examination of the reception process con-

sidering the first passage starts with the 1-D case [7, 8]. In [9], the first passage40

time is investigated in a 1-D environment with drift. In both [7] and [9], the

first passage time in the 1-D medium with drift is shown to follow an inverse

Gaussian distribution. Using the inverse Gaussian and Lévy distributions for

the first passage time is also a common practice in studying the capacity of

molecular timing channels [12, 13].45

The first passage process in 3-D is more complex than the 1-D case; thus,

studying it in a tractable manner requires making several assumptions on trans-

mitter or channel properties. Two common assumptions are considering point

transmitters and spherical receivers. In [10], the authors derive the expected

number of absorbed MMs in an interval for the point transmitter and fully50

absorbing spherical receiver case. Another work under the same geometrical as-

sumptions considers the case where the receiver surface has receptors [14]. The

cases where the MMs degrade or the communication medium contains enzymes

that neutralize the MMs are also investigated [15, 16, 17].

It is also possible to consider passive receivers in 3-D where the MMs diffuse55

freely in and out of the receiver body, thus contributing to the received signal

more than once. The point transmitter and passive spherical setting is inves-

tigated in [18] both with and without the drift component. Additionally, the

same environment with enzymes is also investigated [19].

In this paper, we consider a reflecting spherical transmitter and fully absorb-60

ing spherical receiver. This setting is more realistic than the point transmitter
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case in terms of molecular communication since the MMs will not appear out of

a singularity in the communication medium, but rather be emitted from a trans-

mitting body that is capable of MM production. Furthermore, using a reflective

transmitter has an advantage of providing directivity gain [20]. Recent studies65

about the first passage time in the literature have been carried out under the

spherical transmitter assumption [20, 21, 22, 23, 24]. In [24], a very simplistic

method is proposed to model the reception process for the reflective spherical

transmitter case using machine learning. Reflecting spherical transmitters are

considered together with inter-symbol interference issues in [21, 22]. An analyt-70

ical study for the first passage time is carried out in [23] for a passive spherical

transmitter (i.e. the MMs diffuse freely in and out of the transmitter.)

As of yet, no analytical solution exists for the first passage time distribution

in sphere-to-sphere MCvD for a reflective transmitter and an absorbing receiver.

The methodology presented in [10] for the point transmitter and absorbing75

spherical receiver is not generalizable to the sphere-to-sphere setting. This is

due to the fact that the authors in [10] use the radial symmetry about the

receiver body in their derivations, which cannot be adapted to our setting due

to the lack of symmetry originating from the reflective transmitter.

In this paper, we aim to overcome the difficulty of the analytical deriva-80

tion approach by modeling the first passage time distribution using a statistical

approach. The contributions of this paper can be summarized as follows:

� We investigate suitable parametric distribution alternatives to represent

the first passage time distribution for sphere-to-sphere MCvD.

� We derive and introduce two new heavy-tail distributions, namely general-85

ized beta-generated inverse of generalized gamma (GBIGG) and Kummer

beta-generated inverse of generalized gamma (KBIGG), to the communi-

cations domain.

� The distributions that we introduce serve as efficient tools for analyzing

the first passage time probability in sphere-to-sphere MCvD. Once the90
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parameters have been evaluated for the given environment, the first pas-

sage time probability can be represented with a few parameters, instead

of storing empirical first passage time distributions or running simulations

again.

� Using classical error metrics, we test the modeling performance of these95

distributions under diverse and challenging scenarios by comparing them

against empirical densities obtained from extensive simulations.

� In addition, we rigorously test and affirm the modeling success of our

proposed distributions using the powerful Kolmogorov-Smirnov goodness

of fit test.100

� The approach that we describe in this paper enables us to investigate the

probability of absorption and signal-to-interference ratio, both of which

could not be calculated using simulations otherwise.

� We emphasize the advantages of using a reflective sphere transmitter over

the point transmitter.105

� The distributions that we propose in this work make it easier to conduct

further research such as inter-symbol interference, modulation, and chan-

nel capacity for sphere-to-sphere MCvD.

The remainder of this paper is organized as follows: In Section 2, we present

the sphere-to-sphere MCvD system model, and explain our motivation for choos-110

ing to work with a reflective sphere transmitter. In Section 3, we present the can-

didate distributions for modeling the first passage time distribution of sphere-

to-sphere MCvD, along with two novel heavy-tail distributions. We present and

validate the modeling performance of the candidate distributions in Section 4,

followed by a preliminary network performance analysis. We conclude with a115

summary of key observations and future directions in Section 5.
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2. Sphere-to-Sphere Molecular Communication via Diffusion System

Model

We model a communication system composed of a fluid environment and

a pair of devices, each called Nanonetworking-enabled Node (NeN); one as the120

transmitter and the other as the receiver. The NeNs are inspired by the cells

in the sense that they are able to produce energy by converting raw materials

in their surroundings. In this work, we assume that the NeNs have the basic

functionalities necessary for communication and are able to use part of the

produced energy for communication purposes.125

In MCvD, the information transfer is achieved between the transmitter and

the receiver via the diffusion-based propagation of specific MMs [25]. The MMs

can be chosen as a specific type of protein, peptide, DNA sequence, or other

molecular structure.

Propagation
(Diffusion)

∆x,∆y,∆z ∼ N (0, 2D∆t)
D: Diffusion Coefficient

∆t: Step time

Reception
(Absorption)

Transmission
(Emission)

rrx

Receiver
(Absorbing)

rtx

Transmitter
(Reflecting)

d

Figure 1: MCvD system process model. The visual is constructed based on real diffusion

simulation data from our particle tracking based simulation tool. Received molecules are

colored yellow and molecules in transit are colored blue. In this setting, diffusion coefficient

D=75 µm2/s, transmitter NeN radius rtx=10µm, receiver NeN radius rrx=10 µm, distance

d=20µm, and the simulation snapshot is taken at t=0.6 s.

The MCvD system is composed of five main processes: encoding, emission,130
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propagation, reception, and decoding. As we show in Figure 1, emission, prop-

agation, and the reception processes are in the focus of this paper.

Both the transmitter and the receiver are assumed to have spherical bodies,

with radii denoted as rtx and rrx, respectively. In our work, we consider a

reflective transmitter which upon emission of MMs, does not absorb them back.135

The MMs are emitted from the region closest to the receiver. In contrast,

the receiver is capable of absorbing MMs such that whenever an MM contacts

the body of the receiver, the molecule is received by being absorbed from the

environment. The transmitter and the receiver NeNs are deployed d µm apart

in a 3-D no-drift liquid medium that has viscosity and temperature similar to140

blood.

2.1. Messenger Molecule Propagation via Brownian Motion

Propagation process consists of the free diffusion of MMs in the molecular

scale when the environment does not have any drift. In this scale, the movement

of particles inside a fluid is modeled by the Brownian motion. We do not

consider the collisions between MMs for the sake of simplicity. In a 1-D space,

the displacement of a single MM in a unit time is a random variable ∆x, which

follows a normal distribution with zero mean and σ2 variance

∆x ∼ N (∆x; 0, σ2) (1)

where σ =
√

2D∆t and D is the diffusion coefficient that describes the tendency

of the propagating molecules to diffuse through the fluid [26].

In our model, the particles propagate through an unbounded 3-D environ-

ment without drift. This movement can be modeled as three independent dis-

placements (one for each dimension) [27] and the total displacement, −→r , in one

time step can be found as

−→r = (∆x,∆y,∆z). (2)
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2.2. Motivation: The Advantage of the Reflecting Sphere Transmitter Over the145

Point Transmitter

Researchers often operate under simplifying assumptions, and in many cases

these assumptions are crucial to initiate the in-depth analysis of an emerging

field. However, as the nanonetworking and molecular communication domains

start to gain significant popularity, it is also necessary to target more realistic150

scenarios. In this aspect, evolving the point transmitter assumption into a

sphere transmitter setting is an appropriate step. The additional reflectivity

feature for the sphere transmitter complicates the work to be done, but our

motivation is that it also brings a significant advantage from a communications

point-of-view.155

When a point transmitter is used, the MMs are dispersed in all directions.

Many of these MMs go in the opposite direction from the receiver. Some MMs

never reach the receiver or they reach too late and cause inter-symbol interfer-

ence. In our setting, the reflecting transmitter emits the MMs from its closest

point to the receiver, which is shown to work best in terms of mean first passage160

time and probability of absorption [28]. Most of the reflections occur just after

transmission, when the MMs are still close to the transmitter surface facing the

receiver. The reflective nature of the transmitter biases the total movement of

the MMs towards the receiver.

In Figure 2, we present the signal boost advantage of using a reflective165

sphere transmitter over a point transmitter. The number of received MMs

for the reflecting sphere case attains a sharper peak and has a slightly lighter

tail compared to the point transmitter case. This phenomenon is the direct

result of the increased MM absorption probability. As a consequence, it is

possible to emit a lower number of MMs and still attain a similar number of170

absorbed MMs as the point transmitter case. This results in a more budget-

friendly consumption of MMs, especially if there are energy constraints on the

transmitter NeN regarding the production of MMs.
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Figure 2: The advantage of using a reflecting sphere transmitter over a point transmitter

is evident in the number of absorbed MMs (rtx=10 µm, rrx=10µm, d=2µm, D=125µm2/s,

100 000 MMs are sent.)

3. Modeling the First Passage Time Distribution and Absorption

Probabilities for Sphere-to-Sphere MCvD175

Arising from the probabilistic dynamics of Brownian motion, the MMs move

randomly. During this random movement, it is possible to miss and never

coincide with the receiver NeN since the first passage process is not recurrent in

3-D environment [29]. This means that even if we wait infinitely, some MMs will

never reach the receiver NeN. From our point of view, successful communication180

relies on the absorption of MMs. Therefore, we signify an absorbed MM as

“successful” and denote its absorption probability as pa < 1. Unsuccessful

MMs are those that evade the absorption process with probability 1− pa. Due

to its simple nature, MM absorption is a Bernoulli process. The parameter of

the Bernoulli distribution can be easily estimated using the sample mean, i.e.185

by calculating the ratio of received MMs to the emitted MMs.

In the context of this work, the first passage time refers to the time elapsed

from the release of an MM from the transmitter NeN until the time the MM

is absorbed by the receiver NeN. First passage time is an improper random

variable in the sense that its probability density function integrates to pa < 1.

However, the first passage time of the received MMs is a well-defined random
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variable with the conditional density

f(t) =
f∗(t)

pa
(3)

where f∗(t) is the (improper) first passage time distribution of all MMs and

pa is the probability of absorption. In the remainder of this paper, whenever

we mention the “first passage time distribution”, we refer to the conditional

density introduced above. First passage time probability is affected mainly190

by the diffusion coefficient, transmitter-receiver properties, and the distance

between the transmitter and the receiver.

In this section, our main focus is on finding a suitable parametric probability

distribution that best describes the first passage time distribution (f(t) in (3)) of

received MMs for sphere-to-sphere MCvD. We also need to find the absorption195

probability (pa in (3)) of an MM since some MMs never arrive at the receiver

and the first passage time is defined only for absorbed MMs. In the remainder

of this section, we start by elaborating on the point-to-sphere special case of the

first passage distribution. Then, we consider the generalized sphere-to-sphere

communication by discussing several candidate distributions and introducing200

two new distributions. We conclude the section by presenting an estimator for

the absorption probability.

3.1. Special Case: Point-to-Sphere MCvD

For a point transmitter (rtx = 0) and a sphere receiver (rrx > 0) in 3-D

environment, the hitting rate nhit(t) of the MMs to the receiver is formulated

in [10] as

nhit(t) =
rrx

d+ rrx

d√
4πDt3

e−
d2

4Dt . (4)

In this context, the hitting rate nhit(t) refers to the improper first passage time

distribution of all MMs. When inspected closely, (4) is actually a scaled version

of the inverse gamma (IG1) distribution. Inverse gamma is a two-parameter

1The abbreviation IG is sometimes used to indicate the inverse Gaussian distribution. The

reader should note that throughout this paper the abbreviation IG only refers to the inverse

gamma distribution.
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distribution with support t > 0, shape parameter α > 0, and scale parameter

θ > 0. The probability density function of the inverse gamma distribution is

fIG(t;α, θ) =
1

θ Γ(α)
(θ/t)

α+1
e−

θ/t, (5)

where Γ(·) is the gamma function. The cumulative distribution function of the

inverse gamma distribution is also referred to as the regularized gamma function

and has the form

FIG(t;α, θ) =
Γ (α, θ/t)

Γ(α)
, (6)

where the numerator Γ(·, ·) is the upper incomplete gamma function. Thus, we

can represent (4) as

nhit(t)︸ ︷︷ ︸
f∗(t)

=
rrx

d+ rrx︸ ︷︷ ︸
pa

fIG

(
t;

1

2
,
d2

4D

)
︸ ︷︷ ︸

f(t)

, (7)

where f∗(t) is the improper first passage time distribution, pa is the absorption

probability of an MM, and f(t) is the conditional first passage time distribution205

of the received MMs as introduced in (3) 2.

Our aim is to find both pa and f(t) that work not only for the point trans-

mitter (rtx = 0), but also for sphere transmitters as well (i.e. rtx ≥ 0). Thus,

as the baseline distribution for f(t), we start by relaxing both shape (α = 1/2)

and scale (θ = d2/4D) parameter values defined in (7) and fit the inverse gamma210

distribution described in (5) and (6). However, in Section 4, we show that even

this relaxed inverse gamma distribution is not adequate for modeling the first

passage time distribution f(t) for sphere-to-sphere MCvD. In the upcoming sub-

sections, we introduce candidate distribution families which are generalizations

of the inverse gamma distribution.215

2Note that the inverse gamma distribution with shape parameter α = 1/2 and scale param-

eter θ is equivalent to the Lévy distribution with location parameter 0 and scale parameter

2θ, i.e. fIG(t; 1/2, θ) ∼ fLevy(t; 0, 2θ). The Lévy distribution is also considered for the first

passage time probability in the literature [13].
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3.2. IGG: Inverse of Generalized Gamma

In 1962, the Generalized Gamma distribution was introduced by Stacy [30].

Rewriting the generalized gamma distribution for the random variable 1/t results

in the inverse of generalized gamma distribution (IGG). The probability density

function of the IGG distribution is

fIGG(t;α, θ, β) =
β

θ Γ(α)
(θ/t)

αβ+1
e−(

θ/t)β (8)

where α and θ are same as in IG distribution, and β > 0. The cumulative

distribution function of the inverse of the Generalized Gamma distribution is

FIGG(t;α, θ, β) =
Γ
(
α, (θ/t)

β
)

Γ(α)
. (9)

The inverse of generalized gamma distribution becomes the IG distribution when

β = 1:

fIGG (t;α, θ, 1) = fIG (t;α, θ) .

3.3. GBIGG: Generalized beta-generated inverse of generalized gamma

Similar to the IG distribution, we find the IGG distribution not satisfactory

enough for modeling first passage time probability of sphere-to-sphere MCvD.

We base this claim on the results shown in Section 4. To remedy this problem,220

we propose a new six parameter distribution named generalized beta-generated

inverse of generalized gamma distribution. Before presenting the PDF and CDF

of this distribution, we discuss the generalization method that we use in detail.

In the statistics literature, there are several methods for generalizing proba-

bility distributions by introducing additional parameters that control tail weights,225

skewness, kurtosis, etc. [31, 32, 33, 34]. The family of generalized beta-generated

distributions introduced by Alexander et al. [31] is one of them.

In 1984, McDonald introduced the generalized beta distribution of the first

kind [35], which can be characterized by its density as

fGB(u; a, b, c) = cB(a, b)−1uac−1[1− uc]b−1 (10)

where 0 < u < 1, a > 0, b > 0, c > 0, and B(a, b) denotes the beta function.
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Alexander et al. use the generalized beta distribution for introducing a new

family of distributions, namely generalized beta-generated distributions [31].

Given a probability density function g(x; τ) with support S (i.e. x ∈ S), pa-

rameter vector τ , and its cumulative distribution function G(x; τ), the gener-

alized beta-generated g distribution has the probability density function of the

following form

fGBg(x; τ, a, b, c) = cB(a, b)−1g(x; τ)G(x; τ)ac−1[1−G(x; τ)c]b−1 (11)

where x ∈ S, a, b and c are shape parameters. Its cumulative distribution

function is

FGBg(x; τ, a, b, c) = I(G(x; τ)c; a, b) = B(a, b)−1
∫ G(x;τ)c

0

wa−1(1− w)b−1dw

(12)

where I(x; a, b) = B(a, b)−1
∫ x
0
wa−1(1 − w)b−1dw denotes the regularized in-

complete beta function.230

We propose a new six-parameter distribution by incorporating inverse of

generalized gamma distribution (IGG) into the generalized beta-generator, uti-

lizing (11) and (12). We call this new distribution the generalized beta-generated

inverse of generalized gamma, abbreviated as GBIGG. The probability density

function of GBIGG is

fGBIGG(t;α, θ, β, a, b, c) =
β cB(a, b)−1

θ Γ(α)c(a+b−1)

(θ/t)
αβ+1

e−(
θ/t)βΓ

(
α, (θ/t)

β
)ac−1

(
Γ(α)c − Γ

(
α, (θ/t)

β
)c)1−b

(13)

where t ∈ (0,∞).

The cumulative distribution function of GBIGG is

FGBIGG(t;α, θ, β, a, b, c) = I

Γ
(
α, (θ/t)

β
)c

Γ(α)c
; a, b

 (14)

where I(x; a, b) denotes the regularized incomplete beta function.

Note that, generalized beta-generated distributions reduce to beta-generated

distributions [32] when c = 1 and to Kumaraswamy-generated distributions [33]
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when a = 1. In addition, both beta-generated and Kumaraswamy-generated235

distributions reduce to exponentiated distributions when b = 1. In Table 1, we

summarize these special cases of the GBIGG distribution. Note that GBIGG is

a rather complex distribution. It is always a good practice to check whether the

modeling performance of simpler distributions are satisfactory. Thus, in addi-

tion to the GBIGG distribution, we also investigate the modeling performance240

of its special cases.

GBIGG Generalized beta-generated IGG α θ β a b c

BIGG Beta-generated IGG α θ β a b 1

EIGG Exponentiated IGG α θ β a 1 1

KwIGG Kumaraswamy IGG α θ β 1 b c

EIGG Exponentiated IGG (alt. expression) α θ β 1 1 c

IGG Inverse of generalized gamma α θ β 1 1 1

Table 1: Some special cases of the GBIGG distribution.

3.4. KBIGG: Kummer beta-generated inverse of generalized gamma

Arising from the dynamics of Brownian motion, the first passage time dis-

tribution in MCvD has a very heavy tail [11, 21]. Additionally, in the set-

tings where the communicating pair of NeNs are closer, MMs are absorbed very245

quickly. This results in a first passage time distribution skewed to the left ex-

treme. Due to this nature of Brownian motion and MCvD, it is beneficial to

employ a generalization method suitable to remedy these issues. The Kummer

beta-generator introduced in [34] has the advantage of modeling heavy-tailed

distributions and it offers flexibility to the left and right extremes. Thus, we250

use this generator to propose another new six-parameter distribution named

Kummer beta-generated inverse of generalized gamma. Before presenting the

PDF and the CDF of this distribution, we discuss the generalization method

that we use in detail.

In 1995, Ng and Kotz proposed the Kummer beta distribution [36] with
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probability density and cumulative distribution functions

fKB(u; a, b, c) = Kua−1(1− u)b−1e−cu, (15)

FKB(u; a, b, c) = K

∫ u

0

wa−1(1− w)b−1e−cwdw, (16)

respectively, where 0 < u < 1, a > 0, b > 0, and −∞ < c < ∞. The

regularization factor K is defined as

K =

(∫ 1

0

wa−1(1− w)b−1e−cwdw

)−1
(17)

K = 1F1(a; a+ b;−c)−1B(a, b)−1 (18)

where B(·, ·) is the beta function and

1F1(a; a+ b;−c) = B(a, b)−1
∫ 1

0

wa−1(1− w)b−1e−cwdw (19)

is the confluent hypergeometric function [37].255

Based on the Kummer beta distribution, Pescim et al. propose the Kum-

mer beta-generated g distribution [34] with probability density and cumulative

distribution functions

fKBg(x; τ ; a, b, c) = Kg(x; τ)G(x; τ)a−1(1−G(x; τ))b−1e−cG(x;τ), (20)

FKBg(x; τ, a, b, c) = K

∫ G(x;τ)

0

wa−1(1− w)b−1e−cwdw, (21)

respectively, where g(x; τ) and G(x; τ) are the probability density and cumula-

tive distribution functions of the input g distribution with parameters τ .

Using the Kummer beta-generator, we introduce a new six-parameter dis-

tribution based on inverse of generalized gamma distribution. We call this new

distribution the Kummer beta-generated inverse of generalized gamma, abbre-

viated as KBIGG. The probability density function of KBIGG is

fKBIGG(t;α, θ, β, a, b, c)=
Kβ Γ

(
α, (θ/t)

β
)a−1

(θ/t)
αβ+1

e−(
θ/t)β−c

Γ(α,(θ/t)β)
Γ(α)

θ Γ(α)a+b−1
(

Γ(α)−Γ
(
α, (θ/t)

β
))1−b

(22)
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The cumulative distribution function of KBIGG is

FKBIGG(t;α, θ, β, a, b, c) = K

∫ Γ(α,(θ/t)β)
Γ(α)

0

wa−1(1− w)b−1e−cwdw (23)

Although the Kummer beta generated generalized gamma distribution in-

troduced in [38] is somewhat similar, KBIGG distribution is more suitable for

our purposes because it encompasses the inverse gamma distribution as we men-260

tion in Section 3.1. In Table 2, we present some special cases of the KBIGG

distribution and how they relate to each other.

KBIGG Kummer beta-generated IGG α θ β a b c

BIGG Beta-generated IGG α θ β a b 0

EIGG Exponentiated IGG α θ β a 1 0

IGG Inverse of generalized gamma α θ β 1 1 0

Table 2: Some special cases of the KBIGG distribution

In Figure 3 we present a graphical summary of all candidate distributions

that we consider for modeling the first passage time distribution. Both GBIGG

and KBIGG are introduced in this paper for the first time, encompassing five265

other suitable models already existing in the literature. In Section 4, we provide

an in-depth analysis of these distributions’ performances.

6-parameter 5-parameter 4-parameter 3-parameter 2-parameter

KBIGG

GBIGG

BIGG EIGG

KwIGG EIGG

IGG IG

c = 0

c =
1

b = 1

a
=
1

β = 1

a
=
1

b = 1

c =
1

Proposed
in this paper

Figure 3: Hierarchy of candidate distributions. We start out with the inverse gamma dis-

tribution and introduce some of its generalizations currently existing in the literature. The

6-parameter GBIGG and KBIGG distributions are introduced in this paper for the first time.
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3.5. Intricacies of fitting distributions to empirical data

Although the candidate distributions for the first passage time distribution

have their support on [0,∞), it is practically impossible to observe the absorp-270

tion of MMs in a simulation environment indefinitely. Since simulations provide

us with finite-time observations, we need to take this fact into account when

finding the suitable first passage time probability distribution. The absorption

of an MM is analogous to the death event in lifetime data analysis. Researchers

in this domain often come across finite-time observations, which are specified275

as right-truncated [39, 40]. That is, the researchers are unable to observe the

event of interest after some time T . In our case, we are unable to observe the

absorption of some MMs after the simulation end time T . Thus, we need to fit

a right-truncated distribution to the first passage time data.

For a given distribution with probability density function f(t) and cumu-280

lative distribution function F (t), the distribution right-truncated at T is ex-

pressed with the probability density function f(t)
F (T ) and the cumulative distribu-

tion function F (t)
F (T ) . The right-truncated versions of the candidate distributions

introduced earlier in this section should be used for fitting the simulation data.

As we mention earlier in this section, f∗(t) is the improper first passage time

distribution of all MMs. By definition, its cumulative distribution function F ∗(t)

defines the ratio of MMs absorbed until time t to all emitted MMs. Let Ne be

the total number of molecules emitted at time t = 0 and N̂a(t) be the expected

number of molecules absorbed until time t. Then, the estimator of F ∗(t) can

simply be expressed as

F̂ ∗(t) =
N̂a(t)

Ne
. (24)

For estimating the probability of absorption, we refer to the definition of the

improper first passage time distribution. From (3), it follows that

f∗(t) = paf(t). (25)
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We integrate both sides with respect to t from 0 to T :
T∫

0

f∗(t)dt =

T∫
0

paf(t)dt. (26)

Since the probability of absorption pa is independent of time, we have

F ∗(T ) = paF (T ) (27)

pa =
F ∗(T )

F (T )
. (28)

Substituting the estimator for F ∗(T ) from (24) yields the estimator for pa as

p̂a =
N̂a(T )

NeF (T )
. (29)

4. Results285

We test the modeling performance of the candidate distributions introduced

in Section 3 under 1900 scenarios dictated by four factors: diffusion coefficient,

transmitter/receiver size, and distance. To this end, we implement a particle

tracking based MCvD environment and monitor the movement of each MM

governed by Brownian motion. We operate in an environment as realistic as290

possible by mimicking the pancreatic islets. The NeN sizes are similar to the

pancreatic beta cells and the distance between them are typical of such a setting.

The diffusion coefficients reflect the speed of the insulin hormone in a no-drift

environment with temperature and viscosity similar to those of blood. For each

scenario, the probability of absorption, pa, differs depending on the aforemen-295

tioned four factors. In order to keep the number of received MMs similar, we

emit more molecules for impaired scenarios, which is the reason Ne are drasti-

cally different across all scenarios. Further details of the simulation parameters

are presented in Table 3.

For each MM, we record whether or not it was received and if reception300

occurs, the time of absorption is recorded. For each scenario, absorption times

are used to construct an empirical CDF of the first passage time probability.

Then, least squares fitting is performed to match truncated candidate CDFs

to the empirical CDFs for each scenario. The implementation for fitting is
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Parameter Variable Value

Diffusion coefficient D 50, 75, 100, and 125 µm2/s

Transmitter radius rtx 6, 8, 10, 12, and 14µm

Receiver radius rrx 6, 8, 10, 12, and 14µm

Tx-Rx distance d 2 µm to 20 µm

Simulation time step ∆t 10−5 s

Simulation duration T 1000 s

Number of emitted MMs per scenario Ne 800 000 to 3 200 000

Table 3: Simulation Parameters

done using MATLAB and GNU Scientific Library (GSL). Specifically, we use305

the lsqcurvefit function in MATLAB for curve fitting while performing in-

tegration operations using GSL due to its superior numerical stability. We

investigate the modeling performance of seven candidate distributions, namely

IG, IGG, EIGG, KwIGG, BIGG, GBIGG, and KBIGG, which have 2, 3, 4, 5,

5, 6, and 6 parameters, respectively.310

4.1. Mean Squared Error Based Performance

In order to test the performance of the candidate distributions, we perform

several goodness of fit tests for each simulation scenario. We start by observ-

ing three metrics, namely root mean squared error (RMSE), normalized mean

squared error (NMSE), and normalized root mean squared error (NRMSE) de-
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fined as

RMSE =

√√√√ 1

M

M∑
i=1

(xi − yi)2, (30)

NMSE = 1−

M∑
i=1

(xi − yi)2

M∑
i=1

(yi − ȳ)2
, (31)

NRMSE = 1−

√√√√√√√√
M∑
i=1

(xi − yi)2

M∑
i=1

(yi − ȳ)2
(32)

where M is the sample size, xi are the test data, yi are the reference data,

and ȳ is the mean value of the reference data. We use these three metrics

for measuring the overlap between the empirical CDF (reference data) and the

candidate CDF (test data). For RMSE, values closer to zero indicate a better315

fit. For NMSE and NRMSE, −∞ indicates a bad fit and 1 indicates a perfect

fit. For the latter two metrics, the outcome of zero indicates that the test data

models the reference data only as good as its mean value.
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Figure 4: Cumulative match characteristic (CMC) curves for the RMSE of each candidate

distribution. A good candidate performs well across all scenarios, which is indicated by a high

number of scenarios for a target RMSE value.

In Figure 4, we present the cumulative match characteristic (CMC) curves
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for the RMSE for each candidate distribution. The horizontal axis represents the320

target RMSE and the vertical axis represents the number of scenarios for which

the RMSE is less than the target RMSE. A good candidate distribution performs

well across all scenarios, which is indicated by a high number of scenarios for

a small target RMSE value. KBIGG achieves best fit performance since in

all scenarios RMSE is lower than the competitor distributions. Recall that,325

the working model for the point-to-sphere first passage time distribution given

in (7) is a special case of IG. Even with its parameters relaxed as in (5), it

performs worst among all distributions and fails to model the sphere-to-sphere

first passage time distribution.

IG IGG EIGG KwIGG BIGG GBIGG KBIGG

R
M

S
E

Min 0.0028 0.0004 0.0004 0.0003 0.0003 0.0002 0.0003

Max 0.0115 0.0114 0.0101 0.0096 0.0101 0.0087 0.0010

Mean 0.0069 0.0039 0.0019 0.0014 0.0013 0.0010 0.0005

±0.0015 ±0.0021 ±0.0018 ±0.0013 ±0.0018 ±0.0012 ±0.0001

N
M

S
E

Min 0.9975 0.9975 0.9976 0.9980 0.9976 0.9984 ∼ 1

Max 0.9999 ∼ 1 ∼ 1 ∼ 1 ∼ 1 ∼ 1 ∼ 1

Mean 0.9993 0.9997 0.9999 0.9999 0.9999 ∼ 1 ∼ 1

±0.0004 ±0.0004 ±0.0003 ±0.0002 ±0.0003 ±0.0002

N
R

M
S
E

Min 0.9502 0.9502 0.9514 0.9548 0.9514 0.9605 0.9961

Max 0.9903 0.9986 0.9987 0.9988 0.9990 0.9991 0.9990

Mean 0.9749 0.9854 0.9928 0.9948 0.9948 0.9963 0.9980

±0.0067 ±0.0091 ±0.0078 ±0.0058 ±0.0076 ±0.0054 ±0.0005

Table 4: Goodness of fit results for the candidate distributions according to RMSE, NMSE,

and NRMSE criteria. A good fit is indicated by a low RMSE value, and NMSE or NRMSE

values close to 1.

For each candidate distribution, the minimum, maximum, and average val-330

ues for RMSE, NMSE, and NRMSE are presented in Table 4. A good fit is

indicated by a low RMSE, high NMSE, and high NRMSE values. The best

fitting distribution across all criteria is the KBIGG distribution, followed by the

GBIGG distribution. NMSE is the least discriminative metric among the three
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criteria and gives very close results. (Note that, the value 1 indicates a per-335

fect fit; however, the values presented in the table read as 1 due to rounding.)

Although these metrics clarify the performance difference of the 7 candidate

distributions with respect to each other, they lack the necessary statistical rigor

to prove that KBIGG is indeed a well chosen candidate.

4.2. Statistically Validating the Equality of Candidate Distribution to Emprical340

Data

In order to carry out a more statistically significant comparison, we employ

the Kolmogorov-Smirnov (KS) test. Kolmogorov-Smirnov test is a powerful

statistical tool for assessing the equality of a candidate distribution to an em-

pirical distribution. For an empirical CDF G(t) and a candidate CDF F (t), the

Kolmogorov-Smirnov statistic D∗ is calculated as the supremum of the distance

between two distributions:

D∗ = sup
t

(|G(t)− F (t)|). (33)

The Kolmogorov-Smirnov statistic is used for testing the null hypothesis that

the candidate distribution and the underlying distribution of the empirical data

are equal. The null hypothesis is rejected if

α > 1− FKol(
√
MD∗)︸ ︷︷ ︸

p-value

(34)

where α ∈ (0, 1) is the significance level, M is the number of samples, and FKol(·)
is the cumulative distribution function of Kolmogorov distribution. Rejection

of the null hypothesis means that the candidate distribution does not model the

simulation data well. A higher significance level stands for a stricter test and a345

higher p-value indicates a better fit.

Figure 5 shows the CMC curves of each candidate distribution according

to their KS test performances. The horizontal axis represents the significance

level α of the KS test and the vertical axis represents the number of successful

scenarios passing the test at the given α significance level (i.e. scenarios with350

p-values higher than α.) KBIGG is by far the most successful distribution
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Figure 5: CMC curves of each candidate distribution according to their KS test performances.

A successful candidate passes the KS test across most of the scenarios even at high significance

level α.

to model the first passage time probability. All but one of the 1900 different

scenarios pass the test even when a high significance level is targeted.

p-value Good fits

Min Max Mean α = 0.01 α = 0.05

IG 1.979e-129 0.0044 1.257e-05 ± 0.0001 0% 0%

IGG 6.205e-62 0.9978 0.0733 ± 0.1945 28.89% 19.16%

EIGG 1.679e-54 ∼ 1 0.409 ± 0.3357 78.74% 75.26%

KwIGG 1.679e-54 ∼ 1 0.5371 ± 0.3123 92.32% 89.37%

BIGG 1.679e-54 ∼ 1 0.7005 ± 0.3936 82.68% 80.68%

GBIGG 1.679e-54 ∼ 1 0.779 ± 0.3163 94.37% 92.42%

KBIGG 0.04317 ∼ 1 0.9116 ± 0.1521 100% 99.95%

Table 5: Minimum, maximum, and mean p-values for each candidate distribution along with

the percentage of good fits at significance level α, out of 1900 scenarios. A higher p-value and

percentage indicate a statistically better fit.

Table 5 presents a summary of the CMC curves in Figure 5. At both signif-

icance levels 0.01 and 0.05, KBIGG is the best candidate distribution to model355

the first passage time probability by passing the KS test, followed by GBIGG

and KwIGG, respectively. At significance level 0.01, KBIGG passes the KS test
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across all 1900 scenarios. It is also worth mentioning that the worst p-value

achieved by KBIGG is by far greater than its counterparts for other distribu-

tions. (Some of the maximum p-values are very close to 1 and they appear as 1360

due to rounding.)
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Figure 6: Observing the candidate distributions closely: The PDF of the “worst KBIGG

fit” where it achieves the minimum p-value in comparison to its contenders. All candidate

distributions are displayed in their truncated forms (f(t)/F (T )) since the empirical observations

stop at time T . In this scenario, D=125µm2/s, rtx=14 µm, rrx=10 µm, and d=2µm. Even

the worst fit of KBIGG outperforms its counterparts.

Modeling the first passage time probability turns out to be more challenging

for specific scenarios where the diffusion coefficient is high, both transmitting

and receiving NeNs are large and the distance between them is small. In Fig-

ure 6, we observe this challenge closely. This figure shows all of the candidate365

PDFs for the scenario where the p-value achieved by KBIGG is minimum among

all scenarios. This specific scenario results in a rush of fast moving MMs across

a small gap, in addition to being reflected and absorbed by large NeN bodies.

Most of the candidate distributions struggle with modeling the first passage time

distribution of such a scenario due to the empirical CDF’s significant skewness370

towards the left extreme (notice the short duration in the vertical axis.) Re-

call that our reason for choosing the Kummer-beta generator for deriving the

KBIGG distribution is its power at offering flexibility to extreme values and its
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ability to support heavy tails. The outcome of this scenario shows that KBIGG

is indeed a very suitable choice for modeling the first passage time probability375

of sphere-to-sphere MCvD. In the remainder of this paper, we focus our analysis

on the KBIGG distribution.
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Figure 7: The effect of diffusion coefficient D and transmitter-receiver distance d on the

p-values for KBIGG. Higher intensity areas indicate a higher p-value. First passage probability

is harder to model under fast diffusion and small distances. (rtx=10µm, rrx=10 µm)

The difficulty of modeling the first passage probability under the fast dif-

fusion and small distance combination can be further observed in Figure 7. In

this figure, p-values for KBIGG is given as a heatmap encompassing all possible380

diffusion coefficient and distance pairs. Higher intensity areas indicate a higher

p-value where KBIGG models the empirical data well. The difficulty presented

by the diffusion coefficient is only observed for small distances; when the dis-

tance is larger, the diffusion coefficient does not affect the fitting performance.

No significant change is observed in p-value with respect to transmitter/receiver385

size and, therefore, its graph is omitted.

Figure 8 shows the change in the PDFs of KBIGG distribution under differ-

ent transmitter/receiver distances. The separation between the communicating

bodies is a very prominent factor in MCvD. The shape of the first passage time

distribution changes drastically with different d values. Increasing the separa-390

tion results in a great impairment of communication where the first passage

process becomes much more uniform in time, and the distribution’s mode shifts
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Figure 8: The change in the PDFs of KBIGG distribution under different transmitter/receiver

distances. Corresponding empirical PDF values are marked in ‘x’. (D=75 µm2/s, rtx=10 µm,

rrx=10µm)

towards right. KBIGG’s high modeling performance can be observed once more

by the significant overlap between the curves and the empirical PDF data.
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Figure 9: The change in peak signal time with respect to distance and diffusion coefficient.

(rtx=10 µm, rrx=10µm)

In Figure 9, we observe how the mode of the fitted KBIGG distributions395

change with respect to distance and diffusion coefficient. The vertical axis

named ‘tpeak’ denotes the mode of the distribution, i.e. the peak time of the sig-

nal. Similar to the point source setting [10], tpeak is quadratically proportional
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to d and inversely proportional to D.

Up until this point, we have established the statistical significance of KBIGG400

being the most suitable choice for modeling the first passage time probability of

sphere-to-sphere MCvD. In all candor, we would like to point out that there is

still the need for a mechanism that maps the four network scenario parameters

D, rtx, rrx, and d to the six distribution parameters α, θ, β, a, b, and c. Note

that, finding this mapping is out of the scope of this paper and our focus is on405

introducing the suitable distribution family for which this mapping should be

investigated.

4.3. Preliminary Network Performance Analysis

Although the focus of this work is on modeling the first passage time distri-

bution of sphere-to-sphere MCvD, we also dwell on a couple of network perfor-410

mance criteria based on the KBIGG distribution. We observe the effect of the

four scenario parameters D, rtx, rrx, and d.
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(a) rrx=6 µm, D=75 µm2/s
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(b) rrx=14 µm, D=75 µm2/s

Figure 10: The change in probability of absorption with respect to transmitter/receiver size

and distance. Higher intensity areas indicate a higher probability of absorption.

We first investigate the probability of absorption pa under different scenarios

in Figure 10. In this heatmap, higher intensity areas indicate a higher probabil-

ity of absorption. In Figures 10a and 10b, we show the change in probability of415

absorption with respect to changing distance and transmitter size for rrx=6 µm

and rrx=14 µm, respectively. We observe that increased distance affects ab-
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sorption negatively, since the MMs are scattered away before they can reach

the receiver. A large receiver body is capable of absorbing more MMs, which is

shown by the larger bright intensity area in Figure 10b. An interesting trend to420

observe is the effect of the transmitter size on absorption. When the receiver

body is large, increasing the transmitter’s size affects the absorption process

favorably since the MMs reflect off of the transmitter surface towards the re-

ceiver. This trend is more prominent for small distances; reflected molecules

are absorbed by the large receiver body before they have a chance to dissipate.425

The behavior is almost non-existent for the case with a smaller receiver. Even

when the MMs are reflected by the transmitter, they are less likely to coincide

with a small body as they dissipate.

Like in any other communication application, MCvD also requires a contin-

uous transmission of information in the communication medium. One way to

provide this continuity is to divide the time into symbol durations and peri-

odically release batches of MMs to convey information. In such a setting, the

heavy tailed nature of the first passage time probability creates a risk. Lagging

MMs which are absorbed after their own symbol duration cause inter-symbol

interference and make MCvD a channel with memory [21]. Signal to interfer-

ence ratio (SIR) is a simple metric to assess the effect of the heavy tail on the

intended signal. For a symbol duration of t, SIR is defined as

SIR(t) =
F (t)

1− F (t)
. (35)

In Figure 11, we present the effect of the transmitter and receiver size on

SIR, as well as the reflecting sphere transmitter’s advantage over the point430

transmitter. In order to observe the effect of transmitter reflectivity better, we

investigate a scenario where the distance between the communicating NeNs is

small and the diffusion coefficient is high. Increasing the transmitter size has

a distinctly positive effect on the SIR, especially when the receiver is larger, as

shown in Figure 11b. This trend is still observable but has a slightly diminished435

effect when the receiver is small as in Figure 11a.

Another important point worth mentioning is that increasing the receiver
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Figure 11: The effect of the transmitter and receiver size and the sphere transmitter’s advan-

tage over the point transmitter is portrayed in terms of signal-to-interference ratio (d=2 µm,

D=125µm2/s.)

size has no effect on SIR when the point transmitter is used since the first

passage time distribution in that case depends only on d and D (as shown in

(7)). In contrast, using a reflective sphere transmitter not only boosts SIR,440

but the effect is also amplified when a larger receiver is used. Therefore, in

addition to being more realistic, the sphere transmitter also has a positive effect

on the communication quality when it is of reflective nature, thus confirming

once again our motivation regarding this paper.

Note that, for calculating the SIR using simulation results, two values would445

be needed: the number of absorbed molecules until time t, Na(t), and the total

number of absorbable molecules, Na(∞). The estimator of the SIR would then

be Na(t)
Na(∞)−Na(t) . Here, Na(t) can be easily counted, however it is impossible to

find the value of Na(∞) using simulations. Only the total number of absorbed

molecules until the end of simulation, Na(T ), can be calculated. Without any450

closed-form representation of the first passage time distribution, the SIR can

only be estimated using Na(T ) instead of Na(∞). This would result in an

inaccurate and optimistic estimation of SIR since Na(∞) > Na(T ). By using

the KBIGG distribution to represent the first passage time distribution, we are

able to provide an accurate analysis of the SIR.455
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While we strive to work in a communication setting with a high SIR value, it

follows from the definition in (35) that the SIR approaches infinity as t→∞. A

trade-off is needed to continue communication in a timely fashion with a short

symbol duration, while keeping the SIR as high as possible. Finding the optimal

symbol duration under these considerations is an open issue that is yet to be460

investigated.

5. Conclusion

In this paper, we investigate the first passage time distribution of sphere-

to-sphere molecular communication via diffusion in the 3-D environment. In

the literature, this issue is mostly examined for the 1-D case; for 3-D, the first465

passage time probability is shown to follow an inverse gamma distribution for

point-to-sphere communication. However, realistic channel modeling requires

a transmitting body, which makes a full analytical approach a challenge. To

this end, we investigate several candidate distributions to represent the first

passage time probability by using empirical densities obtained from extensive470

simulations. In addition to investigating several existing distributions in the

literature, we introduce two new distributions: the generalized beta-generated

inverse of generalized gamma (GBIGG) and Kummer beta-generated inverse

of generalized gamma (KBIGG). We fit these candidate distributions to the

empirical distributions we construct from simulation data. We meticulously475

evaluate the quality of these fits with several methods, including the powerful

Kolmogorov-Smirnoff test for goodness of fit. We show that KBIGG models

sphere-to-sphere MCvD almost perfectly, and it is the best performing distribu-

tion across a variety of simulation scenarios, followed by GBIGG. We also show

that point and sphere transmitters affect the behavior of MCvD significantly480

since the inverse gamma distribution (which is suitable the point-to-sphere ap-

proach) falls short of statistically acceptable modeling for the sphere-to-sphere

MCvD. Additionally, we conduct a preliminary network performance analysis

focusing on the probability of molecule absorption and signal-to-interference
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ratio. The network performance analysis results emphasize the importance of485

using a reflective spherical transmitter instead of the point transmitter. We also

shed light on several open issues in the area which need to be addressed in the

future, such as finding a mapping of network parameters (distance, diffusion

coefficient, etc.) to the distribution parameters of KBIGG and symbol duration

optimization targeting inter-symbol interference.490
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